Theory of Computer Science
D2. Recursive Enumerability and Decidability

Gabriele Roger

University of Basel

April 22, 2020

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020

1/31

Theory of Computer Science
April 22, 2020 — D2. Recursive Enumerability and Decidability

D2.1 Introduction

D2.2 Encoding/Decoding Functions
D2.3 Recursive Enumerability

D2.4 Semi-Decidability

D2.5 Decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 2 /31

Overview: Computability Theory

Gabriele Roger (University of Basel)

Turing-Computability |

Undecidable
Problems

Theory of Computer Science

(Semi-)Decidability |

Halting Problem |

Reductions |

Rice's Theorem |

L 1

Other Problems |

April 22, 2020

3 /31

Overview: Computability Theory

Gabriele Roger (University of Basel)

Turing-Computability |

Theory of Computer Science

—I Halting Problem |

—| Reductions |

—| Rice's Theorem |

—| Other Problems |

April 22, 2020

4/31

D2. Recursive Enumerability and Decidability Introduction

D2.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 5 /31

D2. Recursive Enumerability and Decidability

Computable Functions

For a higher level of abstraction, we consider the Church-Turing
thesis to be correct (we will further back this up in part F).

» Instead of saying Turing-computable, we just say computable.

» Instead of presenting TMs we use pseudo-code.
> Instead of only considering computable functions
over words (* —, £*) or numbers (N& —, Np),
we permit arbitrary domains and codomains
(e.g., X* —p {0,1}, Ng — X*), ignoring details of encoding.

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020

6

Introduction

31

D2. Recursive Enumerability and Decidability

Computability vs. Decidability

Introduction

> last chapter: computability of functions

> now: analogous concept for languages

Why languages?
» Only yes/no questions (“ls w € L?")

instead of general function computation (“What is f(w)?")
makes it easier to investigate questions.

> Results are directly transferable to the more general problem
of computing arbitrary functions. (~ “playing 20 questions™)

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 7 /31

D2. Recursive Enumerability and Decidability Introduction

How do we proceed?

> We first get to know computable functions for encoding pairs
of numbers as numbers (later used for dovetailing).
» Then we consider two new concepts
» recursive enumerability and
» semi-decidability
and relate them to each other and earlier concepts.
> Afterwards, we require termination of algorithms
~ decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 8 /31

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

D2.2 Encoding/Decoding Functions

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 9 /31

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

Encoding and Decoding: Binary Encode

Consider the function encode : N(Z) — Np with:

1
encode(x, y) := (X Ty) + x

2

» encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

» encode is computable

P encode is bijective

x=0 x=1 x=2 x=3 x=4
y=0 0 2 5 9 14
y=1 1 4 8 13 19
y= 3 7 12 18 25
y=3 6 11 17 24 32
y=4 10 16 23 31 40

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 10 / 31

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode; : Ny — Ny and decode, : Ny — Ny of encode:

decode; (encode(x, y)) = x
decodey(encode(x,y)) =y

» decode; and decode, are computable

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 11 /31

D2. Recursive Enumerability and Decidability Recursive Enumerability

D2.3 Recursive Enumerability

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 12 /31

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)
A language L C ¥* is called recursively enumerable

if L =0 or if there is a total and computable function
f : Ng — X* such that

L= {f(0),f(1),f(2)...}.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzahlbar, f zdhlt L (rekursiv) auf
~~ do not confuse with “abzdhlbar” (countable)

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 13 /31

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Examples (1)

> ¥ = {a,b}, f(x) = a* enumerates {¢, a,aa,...}.
hund if xmod3 =20
> ¥ ={a,b,...,z}, f(x) =< katze if xmod3 =1
superpapagei if xmod3 =2
enumerates {hund, katze, superpapagei}.

> ¥ ={0,...,9}, f(x) = {2X — 1 (as digits) if 2¥ — 1 prime

3 otherwise
enumerates Mersenne primes.

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020

14 / 31

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Examples (2)

For every alphabet ¥, the language >* can be recursively
enumerated with a function fy- : Ng — X*. (How?)

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 15 / 31

D2. Recursive Enumerability and Decidability Semi-Decidability

D2.4 Semi-Decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 16 / 31

D2. Recursive Enumerability and Decidability Semi-Decidability

Semi-Decidability

Definition (Semi-Decidable)
A language L C ¥* is called semi-decidable if the following
function y, : ©* —, {0,1} is computable.

Here, for all w € X*:

1 ifwel

! _
XUW) =\ defined i w L

German: semi-entscheidbar

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 17 / 31

D2. Recursive Enumerability and Decidability Semi-Decidability

Type-0 Languages vs. Semi-Decidability

» Consider a DTM M that accepts a language L.

» On input w
» M stops after a finite number of steps in an end state if w € L.
» For w ¢ L, the computation does not terminate.

> We can easily create a DTM M’ from M that computes x/ .
(How?)

> Vice versa, given a DTM that computes y/; for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)
A language L is of type 0 iff L is semi-decidable.

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020

18 / 31

D2. Recursive Enumerability and Decidability Semi-Decidability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)
A language L is recursively enumerable iff L is semi-decidable.

Proof.
Special case L = () is not a problem. (Why?)

Thus, let L # () be a language over the alphabet .

(=): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w:
FOR n:=0,1,2,3,... DO
IF f(n) =w THEN
RETURN 1
END
DONE

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 19 / 31

D2. Recursive Enumerability and Decidability Semi-Decidability

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).
(«<): L is semi-decidable with semi-decision procedure M.
Choose w € L arbitrarily. (We have L # ().)

Define:
foe () if n is the encoding of pair (x, y)
f(n) = x and M executed on fx+(x) stops in y steps
w otherwise

f is total and computable and has codomain L.
Therefore f enumerates L. O

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 20 /31

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability

Theorem
Let L be a language. The following statements are equivalent:

Q L is semi-decidable.

@ L is recursively enumerable.

© L is of type 0.

Q L = L(M) for some Turing machine M

Q x| is (Turing-) computable.

@ L is the domain of a computable function.

@ L is the codomain of a computable function.

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 21 /31

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability: Proof (1)

< (5): definition of semi-decidability
(2): earlier theorem in this chapter
(5): earlier theorem in this chapter
(4): from Chapter C8
(6):

(

X} is computable with domain L

LI

5): to compute X}, compute a function with domain L,
hen return 1

= (7): use a function enumerating L (special case L = ()

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 22 /31

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(7) = (2): If L= 10, obvious.

Otherwise, choose w € L arbitrarily, and let M be an algorithm
computing g : ¥* —, X* with codomain L.

To compute a function f enumerating L,

use the same dovetailing idea as in our earlier proof:

(fe- (x)) if n is the encoding of pair (x, y)
f(n) = gllxs and M executed on fs«(x) stops in y steps
w otherwise

O

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 23 /31

D2. Recursive Enumerability and Decidability Decidability

D2.5 Decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 24 /31

D2. Recursive Enumerability and Decidability Decidability

Semi-Decidability

Definition (Semi-Decidable)
A language L C ¥* is called semi-decidable if x) : ¥* —, {0,1} is
computable.

Here, for all w € *:

, 1 ifwel
Xi(w) = . .
undefined if w ¢ L

For w & L, the computation does not (have to) terminate.

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 25 /31

D2. Recursive Enumerability and Decidability Decidability

Decidability

Definition (Decidable)
A language L C ¥* is called decidable if y, : ¥* — {0,1},
the characteristic function of L, is computable.

Here, for all w € *:

(w) 1 ifwel
w) .=
Xt 0 ifwel

German: entscheidbar, charakteristische Funktion

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 26 /31

D2. Recursive Enumerability and Decidability

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:
———(Yes
W ———>
——(O No
semi-decidability:
———(Yes
W ———>
77

Example: Diophantine equations

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020

Decidability

27 /31

D2. Recursive Enumerability and Decidability Decidability

Connection Decidability /Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)
A language L is decidable iff both L and L are semi-decidable.

Proof.
(=): obvious (Why?)

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 28 /31

D2. Recursive Enumerability and Decidability Decidability

Connection Decidability/Semi-Decidability (2)

Proof (continued).
(«): Let M, be a semi-deciding algorithm for L,
and let M; be a semi-deciding algorithm for L.

The following algorithm then is a decision procedure for L,
i.e., computes x;(w) for a given input word w:

FORs:=1,2,3,... DO
IF M, stops on w in s steps with output 1 THEN
RETURN 1
END
IF Mj stops on w in s steps with output 1 THEN
RETURN 0
END
DONE O]

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 29 /31

D2. Recursive Enumerability and Decidability Decidability

Example: Decidable # Known Algorithm

Computability of y; does not mean we know how to compute it:
» L = {n € N| there are n consecutive 7s
in the decimal representation of 7}.
> L is decidable.

» There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

» Case 1: x(n)=1forall n
» Case 2: x;(n) =1if n < ng, otherwise it is 0

» In both cases, the functions are computable.

» We just do not know what is the correct function.

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020

30

31

D2. Recursive Enumerability and Decidability Summary

Summary

» decidability of problems (= languages)
corresponds to computability of “yes/no” functions
P semi-decidability:
> recognizing “yes” instances in finite time
> no answer for “no” instances

» decidability of L = semi-decidability of L and L
> semi-decidability = recursive enumerability

> relationship to type-0 languages

Gabriele Roger (University of Basel) Theory of Computer Science April 22, 2020 31 /31

	Introduction
	

	Encoding/Decoding Functions
	

	Recursive Enumerability
	

	Semi-Decidability
	

	Decidability
	

	Summary

