Theory of Computer Science
D1. Turing-Computability

Gabriele Roger

University of Basel

April 20, 2020

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 1/20

Theory of Computer Science
April 20, 2020 — D1. Turing-Computability

D1.1 Turing-Computable Functions

D1.2 Summary

Gabriele Roger (University of Basel) Theory of Computer Science

April 20, 2020

2/20

Overview: Course

contents of this course:

A.

Gabriele Roger (University of Basel)

background v
> mathematical foundations and proof techniques

. logic v

> How can knowledge be represented?
How can reasoning be automated?

automata theory and formal languages v
> What is a computation?

Turing computability

> What can be computed at all?

complexity theory
> What can be computed efficiently?

. more computability theory

> Other models of computability

Theory of Computer Science

April 20, 2020

3/

20

Main Question

Main question in this part of the course:

What can be computed
by a computer?

Gabriele Roger (University of Basel) Theory of Computer Science

April 20, 2020

4/20

Overview: Computability Theory

Gabriele Roger (University of Basel)

Turing-Computability |

Undecidable
Problems

Theory of Computer Science

(Semi-)Decidability |

Halting Problem |

Reductions |

Rice's Theorem |

L 1

Other Problems |

April 20, 2020

5 /20

Overview: Computability Theory

Gabriele Roger (University of Basel)

Undecidable
Problems

Theory of Computer Science

(Semi-)Decidability |

Halting Problem |

Reductions |

Rice's Theorem |

L 1

Other Problems |

April 20, 2020

6 /20

D1. Turing-Computability Turing-Computable Functions

D1.1 Turing-Computable Functions

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 7 /20

D1. Turing-Computability Turing-Computable Functions

Computation

What is a computation?
» intuitive model of computation (pen and paper)
P> vs. computation on physical computers

» vs. formal mathematical models

In the following chapters we investigate
models of computation for partial functions f : Né —p No.

> no real limitation: arbitrary information
can be encoded as numbers

German: Berechnungsmodelle

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 8 /20

D1. Turing-Computability Turing-Computable Functions

Church-Turing Thesis

Church-Turing Thesis
All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

German: Church-Turing-These
» cannot be proven (why not?)
» but we will collect evidence for it (~~ part F)

Gabriele Roger (University of Basel) Theory of Computer Science

April 20, 2020

9/

D1. Turing-Computability Turing-Computable Functions

Reminder: Deterministic Turing Machine (DTM)

Definition (Deterministic Turing Machine)
A deterministic Turing machine (DTM) is given by a 7-tuple
M= (Q,%X,T,d,qo,00, E) with:
> Q@ finite, non-empty set of states
> Y = () finite input alphabet
> [D X finite tape alphabet
» 0:(Q\E)xT — QxT x{L,R,N} transition function
> qo € Q start state
» O eI\ X blank symbol
» E C @ end states

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 10 / 20

D1. Turing-Computability

Computation of Functions?

How can a DTM compute a function?
> “Input” x is the initial tape content

» “Output” f(x) is the tape content (ignoring blanks
at the left and right) when reaching an end state

> If the TM does not stop for the given input,
f(x) is undefined for this input.

Which kinds of functions can be computed this way?
» directly, only functions on words: f : X* —, ¥*

> interpretation as functions on numbers f : N§ —, No:
encode numbers as words

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 11

Turing-Computable Functions

/20

D1. Turing-Computability Turing-Computable Functions

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)
ADTM M = (Q,%,T,4, qo, 0, E) computes the (partial) function
f:¥X* —, X* for which:

forall x,y € ¥*: f(x) =y iff (g, q0,x) F* (O...0, g, yOI...[O)
with ge € E. (special case: initial configuration (g, qo,) if x = ¢)

German: DTM berechnet f
» What happens if symbols from '\ X (e.g., O) occur in y?

» What happens if the read-write head is not
on the first symbol of y at the end?

> |s f uniquely defined by this definition? Why?

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020

12 /20

D1. Turing-Computability Turing-Computable Functions

Turing-Computable Functions on Words

Definition (Turing-Computable, f : ¥* —,)
A (partial) function f : ©* — X* is called Turing-computable
if a DTM that computes f exists.

German: Turing-berechenbar

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 13 /20

D1. Turing-Computability Turing-Computable Functions

Example: Turing-Computable Functions on Words

Example

Let X = {a,b, #}.

The function f : ¥* —, ¥* with f(w) = w#w for all w € ©*
is Turing-computable.

~~ blackboard

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 14 / 20

D1. Turing-Computability Turing-Computable Functions

Encoding Numbers as Words

Definition (Encoded Function)
Let f : N& —, Ng be a (partial) function.
The encoded function £°4¢ of f is the partial function
feode 3% 5, £* with © = {0, 1,#} and f°d(w) = w' iff
» there are nq,...,n,,n" € Ng such that
> f(ny,...,ng) =1,
» w = bin(ny)#...#bin(ng) and
> w' = bin(n').
Here bin: Ng — {0,1}* is the binary encoding
(e.g., bin(5) = 101).
German: kodierte Funktion
Example: f(5,2,3) = 4 corresponds to f<°4¢(101#10#11) = 100.

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 15 / 20

D1. Turing-Computability Turing-Computable Functions

Turing-Computable Numerical Functions

Definition (Turing-Computable, f : N& —, Np)

A (partial) function f : N§ —, Ny is called Turing-computable
if a DTM that computes %9 exists.

German: Turing-berechenbar

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 16 / 20

D1. Turing-Computability Turing-Computable Functions

Example: Turing-Computable Numerical Function

Example
The following numerical functions are Turing-computable:

» succ: Ng =, No with succ(n) :==n+1
n—1 ifn>1

» pred; : Ng =, Ng with pred;(n) := {O ” 0
if n=

n—1 if n>1

> pred; : No —p No with preds(n) := {undefined ifn=0

~~ blackboard

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020

17 / 20

D1. Turing-Computability Turing-Computable Functions

More Turing-Computable Numerical Functions

Example
The following numerical functions are Turing-computable:

> add: Ng —p No with add(nq, np) == ny + mp
> sub: N3 —, Ng with sub(ni, n2) := max{n; — n2,0}
> mul: Ng —p No with mul(ny, n2) :==ny -y

o if 0
> div: N2 —, No with div(ny, np) == { LJf If m 7
undefined if np, =0

~~ sketch?

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 18 / 20

D1. Turing-Computability Summary

D1.2 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 19 / 20

D1. Turing-Computability Summary

Summary

main question: what can a computer compute?
approach: investigate formal models of computation

here: deterministic Turing machines

vvyYyy

Turing-computable function f : 2" —, 2™

there is a DTM that transforms every input w € £*
into the output f(w) (undefined if DTM does not stop
or stops in invalid configuration)

» Turing-computable function f : N§ —, Np:
ditto; numbers encoded in binary and separated by #

Gabriele Roger (University of Basel) Theory of Computer Science April 20, 2020 20 /

20

	Turing-Computable Functions
	

	Summary
	

