Theory of Computer Science
C5. Context-free Languages: Normal Form and PDA

Gabriele Roger
University of Basel

April 1, 2020

Overview
| Languages
& Grammars — aalllcs
.| Chomsky
| Regular Normal Form

Languages

- Pumping

] Lemma
| Context-sensitive & | | | Closure
Type-0 Languages Properties

- Decidability

Context-free Grammars and e-Rules

@00000

Context-free Grammars and =-Rules

Context-free Grammars and £-Rules Chomsky Normal Form >us Summary

0O@0000

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple (X, V, P, S) with
@ X finite alphabet of terminal symbols,
@ V finite set of variables (with V N X = (),
Q@ PC(Vx(VUI)")U{(S,e)} finite set of rules,
Q If S — £ € P, then all other rules in V x (V' \ {S})UX)".
© S € V start variable.

Context-free Grammars and £-Rules Chomsky Normal Form >us Summary

0O@0000

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple (X, V, P, S) with
@ X finite alphabet of terminal symbols,
@ V finite set of variables (with V N X = (),
Q@ PC(Vx(VUI))U{(S, &)} finite set of rules,
Q If S — £ € P, then all other rules in V x ((V\ {S})UX)*.
© S € V start variable.

Rule X — ¢ is only allowed if X = S
and S never occurs on a right-hand side.

Context-free Grammars and e-Rules C sky Normal Form Push-Down

0O@0000

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple (X, V, P, S) with
@ X finite alphabet of terminal symbols,
@ V finite set of variables (with V N X = (),
Q@ PC(Vx(VUI))U{(S, &)} finite set of rules,
Q If S — £ € P, then all other rules in V x ((V\ {S})UX)*.
@ S € V start variable.

Rule X — ¢ is only allowed if X = S
and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Context-free Grammars and e-Rules
00000

Overview

s o e ==
& Grammars

Chomsky
Regular Normal Form
Languages

- Pumping

] Lemma
| Context-sensitive & | | | Closure
Type-0 Languages Properties

- Decidability

Context-free Grammars and e-Rules Chomsky Normal Form >ush-Down Automats: \umnmn

000e00

Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

For every grammar G = (¥, V, P, S) there is a grammar
G' = (T, V', P, S) with rules P' C (V' UT)* x (V/\ {S} UT)*
such that L(G) = L(G").

In the proof we constructed a suitable grammar, where the rules in
P’ were not fundamentally different from the rules in P:

m for rules from V x (VU X)", we only introduced additional
rules from V' x (V' UX)", and

m for rules from V X &, we only introduced rules from V'’ x ¢,
where V/ = V U {5’} for some new variable S’ ¢ V.

Context-free Grammars and e-Rules
000000

e-Rules

For every grammar G with rules P C V x (VUX)*
there is a context-free grammar G' with L(G) = L(G').

Context-free Grammars and e-Rules Chomsky Normal Form >us Summary

0000e0

e-Rules

For every grammar G with rules P C V x (VUX)*
there is a context-free grammar G' with L(G) = L(G').

| \

Proof.
Let G = (X, V,P,S) be a grammar with P C V x (VUX)*.

Let G' = (X, V', P, S) be a grammar with £(G) = L(G’) with
P CV' x((V'\S)UX)*.

Let V. ={Ae V' | A=%, e}. We can find this set V. by first
collecting all variables A with rule A — ¢ € P’ and then
successively adding additional variables B if there is a rule

B — A1A;>...Ax € P’ and the variables A; are already in the set
forall 1 <<k

A

Context-free Grammars and e-Rules ¢ Normal Form

0000e0

e-Rules

For every grammar G with rules P C V x (VUX)*
there is a context-free grammar G' with L(G) = L(G').

Proof (continued).

Let P” be the rule set that is constructed from P’ by

m adding rules that obviate the need for A — ¢ rules:
for every existing rule B — w with B€ V/,w € (V UX)T,
let /. be the set of positions where w contains a variable
A € V.. For every non-empty set I’ C I, add a new rule
B — w', where w’ is constructed from w by removing
the variables at all positions in /’.

m removing all rules of the form A — ¢ (A # S).
Then G” = (X, V', P",S) is context-free and L(G) = L(G"). [I

Context-free Grammars and e-Rules
00000e

Questions

o

~

Questions?

Chomsky Normal Form
00000

Chomsky Normal Form

Chomsky Normal Form
[o] lelele]e]

Overview

Languages
T —| e-rules
& Grammars |

| Regular -

Languages

My

] Lemma
| Context-sensitive & | | | Closure
Type-0 Languages Properties

- Decidability

free Grammars and e-Rules Chomsky Normal Form
00000

Chomsky Normal Form: Motivation

As in logical formulas (and other kinds of structured objects),
normal forms for grammars are useful:

m they show which aspects are critical for defining grammars
and which ones are just syntactic sugar

m they allow proofs and algorithms to be restricted
to a limited set of grammars (inputs): those in normal form

Hence we now consider a normal form for context-free grammars.

t-free Grammars and -Rules Chomsky Normal Form Push-Down Automat: Summar
00 000000 8

Chomsky Normal Form: Definition

Definition (Chomsky Normal Form)

A context-free grammar G is in Chomsky normal form
(CNF) if all rules have one of the following three forms:

m A — BC with variables A, B, C, or

m A — a with variable A, terminal symbol a, or

m S — ¢ with start variable S.

German: Chomsky-Normalform

in short: rule set P C (V x (VW UX))U{(S,e)}

Chomsky Normal Form
0000e0

Chomsky Normal Form: Theorem

For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G’).

free Grammars and e-Rules Chomsky Normal Form
000000

Chomsky Normal Form: Theorem

For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G’).

Proof.
The following algorithm converts the rule set of G into CNF:

| \

Step 1: Eliminate rules of the form A — B with variables A, B.

If there are sets of variables {Bj, ..., Bk} with rules

Bl = 82,82 = B3,...,Bk_1 — Bk,Bk — Bl,

then replace these variables by a new variable B.

Define a strict total order < on the variables such that A — B € P
implies that A < B. lterate from the largest to the smallest
variable A and eliminate all rules of the form A — B while adding
rules A — w for every rule B — w with w € (VU X)™.

free Grammars and e-Rules Chomsky Normal Form

0000e0

Chomsky Normal Form: Theorem

For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G’).

Proof (continued).

Step 2: Eliminate rules with terminal symbols on the
right-hand side that do not have the form A — a.

For every terminal symbol a € ¥ add a new variable A,

and the rule A; — a.

Replace all terminal symbols in all rules that do not have
the form A — a with the corresponding newly added variables. ...

t-free Grammars and e-Rules Chomsky Normal Form
000000

Chomsky Normal Form: Theorem

For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G’).

Proof (continued).
Step 3: Eliminate rules of the form A — BB, ... By with k > 2

For every rule of the form A — B1B> ... By with kK > 2, add new
variables (,, ..., Cx_1 and replace the rule with

A— 81C2
C2 = BQC3

Ci—1 — Bk—1Bx

Summary

t-free Grammars and e-Rules Chomsky Normal Form >us s Summar

O0000e

Chomsky Normal Form: Length of Derivations

Observation

Let G be a grammar in Chomsky normal form,
and let w € £(G) be a non-empty word generated by G.

Then all derivations of w have exactly 2|w| — 1 derivation steps.

~ Exercises] I

Push-Down Automata

©000000000000000

Push-Down Automata

Push-Down Automata
0@00000000000000

Overview
| Languages
& Grammars — aalllcs
.| Chomsky
| Regular Normal Form

Languages

- Pumping

] Lemma
| Context-sensitive & | | | Closure
Type-0 Languages Properties

- Decidability

ree Grammars and e-Rules . Normal Form Push-Down Automata

00@0000000000000

Limitations of Finite Automata

0,1

m Language L is regular.
<= There is a finite automaton that accepts L.

ree Grammars and e-Rules C Normal Form Push-Down Automata

00@0000000000000

Limitations of Finite Automata

0,1

m Language L is regular.
<= There is a finite automaton that accepts L.

m What information can a finite automaton “store”
about the already read part of the word?

free Grammars and e-Rules ¢ Push-Down Automata
00®0000000000000

0,1

'

m Language L is regular.
<= There is a finite automaton that accepts L.

m What information can a finite automaton “store”
about the already read part of the word?

m Infinite memory would be required for
L={xix2...XnXn...x2x1 | n>0,x; € {a,b}}.
m therefore: extension of the automata model with memory

Push-Down Automata
000®000000000000

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

of the stack

m pop: removes the object at the
top of the stack

m peek: returns the top object
without removing it

m push: puts an object on top [.
le Pop
[|

German: Keller, Stapel

t-free Grammars and e-Rules C y Normal Form Push-Down Automata Summar

0000800000000 000

Push-down Automata: Visually

Input tape

[Inlplult]

—

Read head
Stack access
.

Push-down
automaton B | Stack

[#]

German: Kellerautomat, Eingabeband, Lesekopf, Kellerzugriff

xt-free Grammars and e-Rules Cho y Normal Form Push-Down Automata

0000080000000 000

Push-down Automata: Definition

Definition (Push-down Automaton)

A push-down automaton (PDA) is a 6-tuple M = (Q, X, T, 9, qo, #)
with

m Q finite set of states
Y the input alphabet
I" the stack alphabet

d:Qx (ZU{e}) xT — Pe(Q x ') the transition function
(where Pk is the set of all finite subsets)

go € Q the start state

€ [the bottommost stack symbol

German: Kellerautomat, Eingabealphabet, Kelleralphabet,
Uberfiihrungsfunktion

ormal Form Push-Down Automata
000000®000000000

free Grammars and e-Rules

Push-down Automata: Transition Function

Let M = (Q,%,T,6, qo, #) be a push-down automaton.

What is the Intuitive Meaning of the Transition Function 67

m (¢, B1...By) €0(q,a, A): If Mis in state g, reads symbol a
and has A as the topmost stack symbol,
then M can transition to ¢’ in the next step while replacing A
with By ... Bk (afterwards Bj is the topmost stack symbol)

a,A—>Bl...Bk
q q

m special case a = ¢ is allowed (spontaneous transition)

Normal Form Push-Down Automata

0000000000000 00

Push-down Automata: Example

a,A — AA

a,B— AB {

a# — A# . a,A—e) :’g:z
b,A — BA b,B ¢ 9 Ca s
b,B — BB ’
b,# — B#

M = <{q7 q’}’ {a7 b}7 {A7 B’ #}’ 57 q7 #> Wlth

5(q,a,8) = {{q,Ah),(q’,€)} 6(q,b,A) = {(q,BA)} 5(q,e,A) =10
(q,2,B) = {{q,AB)} d(q,b,B) = {(q,BB),(q’,)} d(q,2,B) =0
6(q,a,#) = {(q,A#)} (q,b,#) = {(q,B#)} 5(q,e,#) =10
(g’ a,8) = {(q',e)} (q';0,8) =10 o(q',e,h) =0
5(q’,2,B) =0 5(q’,b,B) = {(d',¢)} 6(q',e,B) =10
5(q',a,#) =10 6(q',b,#) =10 6(q',e,#) ={(d",9)}

xt-free Grammars and e-Rules Cho y Normal Form Push-Down Automata

0O0000000e0000000

Push-down Automata: Configuration

Definition (Configuration of a Push-down Automaton)

A configuration of a push-down automaton M = (Q, X, T, 4, qo, #)
is given by a triple c € Q x X* x ",

German: Konfiguration

Example
[Tlnfplult]
- Configuration
»CQ?) J (q,ut, BACH).

[=[o]>]=

xt-free Grammars and e-Rules Cho y Normal Form Push-Down Automata

000000000 e000000

Push-down Automata: Steps

Definition (Transition/Step of a Push-down Automaton)

We write ¢) ¢ if a push-down automaton M = (Q, X, T, 6, qo, #)
can transition from configuration c¢ to configuration ¢’ in one step.
Exactly the following transitions are possible:

(g,a1...an,A1...Am) Fm
(qyaz...an,B1...BkAz... Am)
if (¢/,B1...Bk) € d(q,a1, A1)
(q/ya1a2...ap,B1...BkAs... Am)
if (¢/,B1...Bk) €d(q,¢e,A1)

German: Ubergang
If M is clear from context, we only write c - ¢’.

t-free Grammars and e-Rules c sky Normal Form Push-Down Automata Summar

000000000 0e00000

Push-down Automata: Reachability of Configurations

Definition (Reachable Configuration)

Configuration ¢’ is reachable from configuration ¢ in PDA M
(c B}y ') if there are configurations ¢, ..., ¢, (n > 0) where

m Cy) = C,

m ¢y ¢y forallie{0,...,n—1}, and

mc,=c.

German: ¢’ ist in M von c erreichbar

t-free Grammars and e-Rules lormal Form Push-Down Automata Summar

00000000000 e0000

Push-down Automata: Recognized Words

Definition (Recognized Word of a Push-down Automaton)

PDA M = (Q, X, T, 4, qo, #) recognizes the word w = a; ... a,
iff the configuration (g, e,e) (word processed and stack empty)
for some g € @ is reachable from the start configuration (qo, w, #).

M recognizes w iff (qo, w,#) F}, (g,€,¢) for some q € Q.

German: M erkennt w, Startkonfiguration

Push-Down Automata
000000000000e000

Push-down Automata: Recognized Word Example

a,A — AA

a,B — AB i)

’ A—e
a,# — A# . a,A—e N~riE .
b,A — BA bB e 7 Ca s
b,B — BB ’

b, # — B#

example: this PDA recognizes bbabbabb ~~ blackboard

Push-Down Automata
0000000000000e00

Push-down Automata: Accepted Language

Definition (Accepted Language of a Push-down Automaton)

Let M be a push-down automaton with input alphabet .
The language accepted by M is defined as

L(M) ={w € £* | M recognizes w}.

example: blackboard

Push-Down Automata
00000000000000e0

PDAs Accept Exactly the Context-free Languages

A language L is context-free if and only if
L is accepted by a push-down automaton.

Push-Down Automata
000000000000000e

Questions

o

~

Questions?

[Je]

Summary

free Grammars and e-Rules C Normal Form 2 Summary

oe

Summary

Every context-free language has a grammar
in Chomsky normal form. All rules have form
m A — BC with variables A, B, C, or
m A — a with variable A, terminal symbol a, or
m S — ¢ with start variable S.

Push-down automata (PDAs) extend NFAs with memory.
PDAs accept not with end states but with an empty stack.

The languages accepted by PDAs are exactly
the context-free languages.

	Context-free Grammars and -Rules
	

	Chomsky Normal Form
	

	Push-Down Automata
	

	Summary
	

