
Theory of Computer Science
C5. Context-free Languages: Normal Form and PDA

Gabriele Röger

University of Basel

April 1, 2020

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Context-free
Languages

ε-rules

Chomsky
Normal Form

PDAs

Pumping
Lemma

Closure
Properties

Decidability

Context-sensitive &
Type-0 Languages

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Context-free Grammars and ε-Rules

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple 〈Σ,V ,P, S〉 with

1 Σ finite alphabet of terminal symbols,

2 V finite set of variables (with V ∩ Σ = ∅),

3 P ⊆ (V × (V ∪ Σ)+) ∪ {〈S , ε〉} finite set of rules,

4 If S → ε ∈ P, then all other rules in V × ((V \ {S}) ∪ Σ)+.

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S
and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple 〈Σ,V ,P, S〉 with

1 Σ finite alphabet of terminal symbols,

2 V finite set of variables (with V ∩ Σ = ∅),

3 P ⊆ (V × (V ∪ Σ)+) ∪ {〈S , ε〉} finite set of rules,

4 If S → ε ∈ P, then all other rules in V × ((V \ {S}) ∪ Σ)+.

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S
and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple 〈Σ,V ,P, S〉 with

1 Σ finite alphabet of terminal symbols,

2 V finite set of variables (with V ∩ Σ = ∅),

3 P ⊆ (V × (V ∪ Σ)+) ∪ {〈S , ε〉} finite set of rules,

4 If S → ε ∈ P, then all other rules in V × ((V \ {S}) ∪ Σ)+.

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S
and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Context-free
Languages

ε-rules

Chomsky
Normal Form

PDAs

Pumping
Lemma

Closure
Properties

Decidability

Context-sensitive &
Type-0 Languages

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = 〈Σ,V ,P,S〉 there is a grammar
G ′ = 〈Σ,V ′,P ′,S〉 with rules P ′ ⊆ (V ′ ∪ Σ)+ × (V ′ \ {S} ∪ Σ)∗

such that L(G) = L(G ′).

In the proof we constructed a suitable grammar, where the rules in
P ′ were not fundamentally different from the rules in P:

for rules from V × (V ∪ Σ)+, we only introduced additional
rules from V ′ × (V ′ ∪ Σ)+, and

for rules from V × ε, we only introduced rules from V ′ × ε,

where V ′ = V ∪ {S ′} for some new variable S ′ 6∈ V .

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

ε-Rules

Theorem

For every grammar G with rules P ⊆ V × (V ∪ Σ)∗

there is a context-free grammar G ′ with L(G) = L(G ′).

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

ε-Rules

Theorem

For every grammar G with rules P ⊆ V × (V ∪ Σ)∗

there is a context-free grammar G ′ with L(G) = L(G ′).

Proof.

Let G = 〈Σ,V ,P,S〉 be a grammar with P ⊆ V × (V ∪ Σ)∗.

Let G ′ = 〈Σ,V ′,P ′, S〉 be a grammar with L(G) = L(G ′) with
P ′ ⊆ V ′ × ((V ′ \ S) ∪ Σ)∗.

Let Vε = {A ∈ V ′ | A⇒∗G ′ ε}. We can find this set Vε by first
collecting all variables A with rule A→ ε ∈ P ′ and then
successively adding additional variables B if there is a rule
B → A1A2 . . .Ak ∈ P ′ and the variables Ai are already in the set
for all 1 ≤ i ≤ k

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

ε-Rules

Theorem

For every grammar G with rules P ⊆ V × (V ∪ Σ)∗

there is a context-free grammar G ′ with L(G) = L(G ′).

Proof (continued).

Let P ′′ be the rule set that is constructed from P ′ by

adding rules that obviate the need for A→ ε rules:
for every existing rule B → w with B ∈ V ′,w ∈ (V ′ ∪ Σ)+,
let Iε be the set of positions where w contains a variable
A ∈ Vε. For every non-empty set I ′ ⊆ Iε, add a new rule
B → w ′, where w ′ is constructed from w by removing
the variables at all positions in I ′.

removing all rules of the form A→ ε (A 6= S).

Then G ′′ = 〈Σ,V ′,P ′′,S〉 is context-free and L(G) = L(G ′′).

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Questions

Questions?

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Context-free
Languages

ε-rules

Chomsky
Normal Form

PDAs

Pumping
Lemma

Closure
Properties

Decidability

Context-sensitive &
Type-0 Languages

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Motivation

As in logical formulas (and other kinds of structured objects),
normal forms for grammars are useful:

they show which aspects are critical for defining grammars
and which ones are just syntactic sugar

they allow proofs and algorithms to be restricted
to a limited set of grammars (inputs): those in normal form

Hence we now consider a normal form for context-free grammars.

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Definition

Definition (Chomsky Normal Form)

A context-free grammar G is in Chomsky normal form
(CNF) if all rules have one of the following three forms:

A→ BC with variables A,B,C , or

A→ a with variable A, terminal symbol a, or

S → ε with start variable S .

German: Chomsky-Normalform

in short: rule set P ⊆ (V × (VV ∪ Σ)) ∪ {〈S , ε〉}

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar
G ′ in Chomsky normal form with L(G) = L(G ′).

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar
G ′ in Chomsky normal form with L(G) = L(G ′).

Proof.

The following algorithm converts the rule set of G into CNF:

Step 1: Eliminate rules of the form A→ B with variables A,B.

If there are sets of variables {B1, . . . ,Bk} with rules
B1 → B2,B2 → B3, . . . ,Bk−1 → Bk ,Bk → B1,
then replace these variables by a new variable B.

Define a strict total order < on the variables such that A→ B ∈ P
implies that A < B. Iterate from the largest to the smallest
variable A and eliminate all rules of the form A→ B while adding
rules A→ w for every rule B → w with w ∈ (V ∪ Σ)+. . . .

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar
G ′ in Chomsky normal form with L(G) = L(G ′).

Proof (continued).

Step 2: Eliminate rules with terminal symbols on the

Step 2:

right-hand side that do not have the form A→ a.

For every terminal symbol a ∈ Σ add a new variable Aa

and the rule Aa → a.

Replace all terminal symbols in all rules that do not have
the form A→ a with the corresponding newly added variables. . . .

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar
G ′ in Chomsky normal form with L(G) = L(G ′).

Proof (continued).

Step 3: Eliminate rules of the form A→ B1B2 . . .Bk with k > 2

For every rule of the form A→ B1B2 . . .Bk with k > 2, add new
variables C2, . . . ,Ck−1 and replace the rule with

A→ B1C2

C2 → B2C3

...

Ck−1 → Bk−1Bk

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Chomsky Normal Form: Length of Derivations

Observation

Let G be a grammar in Chomsky normal form,
and let w ∈ L(G) be a non-empty word generated by G .

Then all derivations of w have exactly 2|w | − 1 derivation steps.

Proof.

 Exercises

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-Down Automata

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Context-free
Languages

ε-rules

Chomsky
Normal Form

PDAs

Pumping
Lemma

Closure
Properties

Decidability

Context-sensitive &
Type-0 Languages

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Limitations of Finite Automata

q0 q1 q2
0

0,1

0

Language L is regular.
⇐⇒ There is a finite automaton that accepts L.

What information can a finite automaton “store”
about the already read part of the word?

Infinite memory would be required for
L = {x1x2 . . . xnxn . . . x2x1 | n > 0, xi ∈ {a, b}}.
therefore: extension of the automata model with memory

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Limitations of Finite Automata

q0 q1 q2
0

0,1

0

Language L is regular.
⇐⇒ There is a finite automaton that accepts L.

What information can a finite automaton “store”
about the already read part of the word?

Infinite memory would be required for
L = {x1x2 . . . xnxn . . . x2x1 | n > 0, xi ∈ {a, b}}.
therefore: extension of the automata model with memory

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Limitations of Finite Automata

q0 q1 q2
0

0,1

0

Language L is regular.
⇐⇒ There is a finite automaton that accepts L.

What information can a finite automaton “store”
about the already read part of the word?

Infinite memory would be required for
L = {x1x2 . . . xnxn . . . x2x1 | n > 0, xi ∈ {a, b}}.
therefore: extension of the automata model with memory

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

push: puts an object on top
of the stack

pop: removes the object at the
top of the stack

peek: returns the top object
without removing it

PopPush

German: Keller, Stapel

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Visually

Input tape

I n p u t

Read head

Push-down
automaton

Stack access

Stack

German: Kellerautomat, Eingabeband, Lesekopf, Kellerzugriff

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Definition

Definition (Push-down Automaton)

A push-down automaton (PDA) is a 6-tuple M = 〈Q,Σ, Γ, δ, q0, #〉
with

Q finite set of states

Σ the input alphabet

Γ the stack alphabet

δ : Q × (Σ ∪ {ε})× Γ→ Pf(Q × Γ∗) the transition function
(where Pf is the set of all finite subsets)

q0 ∈ Q the start state

∈ Γ the bottommost stack symbol

German: Kellerautomat, Eingabealphabet, Kelleralphabet,

German: Überführungsfunktion

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Transition Function

Let M = 〈Q,Σ, Γ, δ, q0, #〉 be a push-down automaton.

What is the Intuitive Meaning of the Transition Function δ?

〈q′,B1 . . .Bk〉 ∈ δ(q, a,A): If M is in state q, reads symbol a
and has A as the topmost stack symbol,
then M can transition to q′ in the next step while replacing A
with B1 . . .Bk (afterwards B1 is the topmost stack symbol)

q q′
a,A→ B1 . . .Bk

special case a = ε is allowed (spontaneous transition)

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Example

q q′

a, A→ AA

a, B→ AB

a, #→ A#

b, A→ BA

b, B→ BB

b, #→ B#

a, A→ ε

b, B→ ε

a, A→ ε
b, B→ ε
ε, #→ ε

M = 〈{q, q′}, {a, b}, {A, B, #}, δ, q, #〉 with

δ(q, a, A) = {〈q, AA〉, 〈q′, ε〉} δ(q, b, A) = {〈q, BA〉} δ(q, ε, A) = ∅
δ(q, a, B) = {〈q, AB〉} δ(q, b, B) = {〈q, BB〉, 〈q′, ε〉} δ(q, ε, B) = ∅
δ(q, a, #) = {〈q, A#〉} δ(q, b, #) = {〈q, B#〉} δ(q, ε, #) = ∅
δ(q′, a, A) = {〈q′, ε〉} δ(q′, b, A) = ∅ δ(q′, ε, A) = ∅
δ(q′, a, B) = ∅ δ(q′, b, B) = {〈q′, ε〉} δ(q′, ε, B) = ∅
δ(q′, a, #) = ∅ δ(q′, b, #) = ∅ δ(q′, ε, #) = {〈q′, ε〉}

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Configuration

Definition (Configuration of a Push-down Automaton)

A configuration of a push-down automaton M = 〈Q,Σ, Γ, δ, q0, #〉
is given by a triple c ∈ Q × Σ∗ × Γ∗.

German: Konfiguration

Example

I n p u t

q

Configuration
〈q, ut, BAC#〉.

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Steps

Definition (Transition/Step of a Push-down Automaton)

We write c `M c ′ if a push-down automaton M = 〈Q,Σ, Γ, δ, q0, #〉
can transition from configuration c to configuration c ′ in one step.
Exactly the following transitions are possible:

〈q, a1 . . . an,A1 . . .Am〉 `M
〈q′, a2 . . . an,B1 . . .BkA2 . . .Am〉

if 〈q′,B1 . . .Bk〉 ∈ δ(q, a1,A1)

〈q′, a1a2 . . . an,B1 . . .BkA2 . . .Am〉
if 〈q′,B1 . . .Bk〉 ∈ δ(q, ε,A1)

German: Übergang

If M is clear from context, we only write c ` c ′.

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Reachability of Configurations

Definition (Reachable Configuration)

Configuration c ′ is reachable from configuration c in PDA M
(c `∗M c ′) if there are configurations c0, . . . , cn (n ≥ 0) where

c0 = c ,

ci `M ci+1 for all i ∈ {0, . . . , n − 1}, and

cn = c ′.

German: c ′ ist in M von c erreichbar

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Recognized Words

Definition (Recognized Word of a Push-down Automaton)

PDA M = 〈Q,Σ, Γ, δ, q0, #〉 recognizes the word w = a1 . . . an
iff the configuration 〈q, ε, ε〉 (word processed and stack empty)
for some q ∈ Q is reachable from the start configuration 〈q0,w , #〉.

M recognizes w iff 〈q0,w , #〉 `∗M 〈q, ε, ε〉 for some q ∈ Q.

German: M erkennt w , Startkonfiguration

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Recognized Word Example

q q′

a, A→ AA

a, B→ AB

a, #→ A#

b, A→ BA

b, B→ BB

b, #→ B#

a, A→ ε

b, B→ ε

a, A→ ε
b, B→ ε
ε, #→ ε

example: this PDA recognizes bbabbabb blackboard

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Push-down Automata: Accepted Language

Definition (Accepted Language of a Push-down Automaton)

Let M be a push-down automaton with input alphabet Σ.
The language accepted by M is defined as

L(M) = {w ∈ Σ∗ | M recognizes w}.

example: blackboard

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

PDAs Accept Exactly the Context-free Languages

Theorem

A language L is context-free if and only if
L is accepted by a push-down automaton.

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Questions

Questions?

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Summary

Context-free Grammars and ε-Rules Chomsky Normal Form Push-Down Automata Summary

Summary

Every context-free language has a grammar
in Chomsky normal form. All rules have form

A→ BC with variables A,B,C , or
A→ a with variable A, terminal symbol a, or
S → ε with start variable S .

Push-down automata (PDAs) extend NFAs with memory.

PDAs accept not with end states but with an empty stack.

The languages accepted by PDAs are exactly
the context-free languages.

	Context-free Grammars and -Rules
	

	Chomsky Normal Form
	

	Push-Down Automata
	

	Summary
	

