Theory of Computer Science
C5. Context-free Languages: Normal Form and PDA

Gabriele Roger
University of Basel

April 1, 2020

Theory of Computer Science
April 1, 2020 — C5. Context-free Languages: Normal Form and PDA

(C5.1 Context-free Grammars and s-Rules
C5.2 Chomsky Normal Form
C5.3 Push-Down Automata

C5.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 1/ 34
Overview
Languages
= guag e-rules
& Grammars
Chomsky
Regular Normal Form
Languages
- Pumping
Lemma
Context-sensitive & Closure
Type-0 Languages Properties
Decidability
Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 3 /34

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 2 /34
C5. Context-free Languages: Normal Form and PDA Context-free Grammars and e-Rules
Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 4 /34

C5. Context-free Languages: Normal Form and PDA Context-free Grammars and e-Rules

Repetition: Context-free Grammars

Definition (Context-free Grammar)
A context-free grammar is a 4-tuple (X, V, P, S) with
@ X finite alphabet of terminal symbols,
Q@ V finite set of variables (with V N'X = 0),
Q@ PC(Vx(VUX))U{(S,e)} finite set of rules,
Q If S — ¢ € P, then all other rules in V x ((V\ {S})UX)*.
@ S € V start variable.

Rule X — ¢ is only allowed if X =S
and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted.
How about context-free grammars?

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 5/ 34

C5. Context-free Languages: Normal Form and PDA Context-free Grammars and e-Rules

Overview

A oz | I
& Grammars

Chomsky
Regular Normal Form

Languages

- Pumping

Lemma
Context-sensitive & Closure
Type-0 Languages Properties
Decidability
Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 6 /34

C5. Context-free Languages: Normal Form and PDA Context-free Grammars and e-Rules

Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = (¥, V,P,S) there is a grammar

G' = (X, V', P, S) with rules P' C (V' UL)* x (V' \ {S}UX)*
such that L(G) = L(G).

In the proof we constructed a suitable grammar, where the rules in

P’ were not fundamentally different from the rules in P:

» for rules from V x (V UX)*, we only introduced additional
rules from V/ x (V' UX)", and

» for rules from V x &, we only introduced rules from V' x ¢,
where V' = V U {S’} for some new variable S’ ¢ V.

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 7/ 34

C5. Context-free Languages: Normal Form and PDA Context-free Grammars and e-Rules

e-Rules

Theorem
For every grammar G with rules P C V x (VUX)*
there is a context-free grammar G' with L(G) = L(G).

Proof.
Let G = (X, V,P,S) be a grammar with P C V x (V U X)*.

Let G’ = (X, V', P',S) be a grammar with £(G) = L(G’) with
P C V' x ((V'\S)UE)".

Let V. = {Ae V' | A=%, e}. We can find this set V. by first
collecting all variables A with rule A — & € P’ and then
successively adding additional variables B if there is a rule

B — A1A, ... A € P’ and the variables A; are already in the set
forall 1 </ <k.

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 8 / 34

C5. Context-free Languages: Normal Form and PDA Context-free Grammars and e-Rules

e-Rules

Theorem
For every grammar G with rules P C V x (VUX)*
there is a context-free grammar G' with L(G) = L(G).

Proof (continued).
Let P” be the rule set that is constructed from P’ by
> adding rules that obviate the need for A — ¢ rules:
for every existing rule B — w with Be V/,w € (V/UX)T,
let /. be the set of positions where w contains a variable
A € V.. For every non-empty set I’ C I, add a new rule
B — w', where w’ is constructed from w by removing
the variables at all positions in /’.
» removing all rules of the form A — ¢ (A # S).

Then G” = (X, V', P"|S) is context-free and £(G) = L(G"). [

C5. Context-free Languages: Normal Form and PDA Chomsky Normal Form

C5.2 Chomsky Normal Form

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 10 / 34

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 9 /34
C5. Context-free Languages: Normal Form and PDA Chomsky Normal Form
Overview

anguages
= e-rules
& Grammars

Regular
Languages

Pumping
Lemma
Context-sensitive & Closure
Type-0 Languages Properties
Decidability
Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 11 / 34

C5. Context-free Languages: Normal Form and PDA Chomsky Normal Form

Chomsky Normal Form: Motivation

As in logical formulas (and other kinds of structured objects),
normal forms for grammars are useful:

> they show which aspects are critical for defining grammars
and which ones are just syntactic sugar

> they allow proofs and algorithms to be restricted
to a limited set of grammars (inputs): those in normal form

Hence we now consider a normal form for context-free grammars.

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 12 / 34

C5. Context-free Languages: Normal Form and PDA Chomsky Normal Form

Chomsky Normal Form: Definition

Definition (Chomsky Normal Form)
A context-free grammar G is in Chomsky normal form
(CNF) if all rules have one of the following three forms:

» A — BC with variables A, B, C, or
» A — a with variable A, terminal symbol a, or
» S — ¢ with start variable S.

German: Chomsky-Normalform

in short: rule set P C (V x (W UZX))U{(S,¢e)}

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 13 / 34

C5. Context-free Languages: Normal Form and PDA

Chomsky Normal Form: Theorem

Theorem
For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G).

Proof.
The following algorithm converts the rule set of G into CNF:

Step 1: Eliminate rules of the form A — B with variables A, B.

If there are sets of variables {Bj, ..., Bx} with rules

Bl — 82,82 — B3,...,Bk_1 — Bk,Bk — B]_,

then replace these variables by a new variable B.

Define a strict total order < on the variables such that A — B € P
implies that A < B. Iterate from the largest to the smallest
variable A and eliminate all rules of the form A — B while adding
rules A — w for every rule B — w with w € (VU X)™.

Gabriele Roger (University of Basel)

Chomsky Normal Form

Theory of Computer Science April 1, 2020 14 / 34

C5. Context-free Languages: Normal Form and PDA Chomsky Normal Form

Chomsky Normal Form: Theorem

Theorem
For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G").

Proof (continued).
Step 2: Eliminate rules with terminal symbols on the
right-hand side that do not have the form A — a.

For every terminal symbol a € ¥ add a new variable A,
and the rule A; — a.

Replace all terminal symbols in all rules that do not have
the form A — a with the corresponding newly added variables.

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 15 / 34

C5. Context-free Languages: Normal Form and PDA

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar
G’ in Chomsky normal form with L(G) = L(G").

Proof (continued).
Step 3: Eliminate rules of the form A — B1B, ... By with k > 2

For every rule of the form A — B1By ... By with kK > 2, add new
variables G, ..., Cx_1 and replace the rule with

A— 31C2
C2 — B2C3

Ck—1 — Bk—1Bx

Gabriele Réger (University of Basel)

Theory of Computer Science April 1, 2020 16 /

Chomsky Normal Form

34

C5. Context-free Languages: Normal Form and PDA

Chomsky Normal Form

Chomsky Normal Form: Length of Derivations

Observation

Let G be a grammar in Chomsky normal form,
and let w € £(G) be a non-empty word generated by G.

Then all derivations of w have exactly 2|w| — 1 derivation steps.

Proof.
~~ Exercises

Gabriele Roger (University of Basel) Theory of Computer Science

April 1, 2020

17 / 34

C5. Context-free Languages: Normal Form and PDA

C5.3 Push-Down Automata

Gabriele Roger (University of Basel) Theory of Computer Science

Push-Down Automata

April 1, 2020 18 /

C5. Context-free Languages: Normal Form and PDA

Overview

Languages
& Grammars

Regular
Languages

Push-Down Automata

e-rules

Chomsky
Normal Form

Pumping
Lemma

Context-sensitive &
Type-0 Languages

Closure
Properties

Gabriele Roger (University of Basel) Theory of Computer Science

Decidability

April 1, 2020

19 / 34

C5. Context-free Languages: Normal Form and PDA

Limitations of Finite Automata

0,1

v

» Language L is regular.
<= There is a finite automaton that accepts L.

» What information can a finite automaton “store”
about the already read part of the word?

» Infinite memory would be required for
L={xixa...XpXn...xax1 | n > 0,x; € {a,b}}.

Push-Down Automata

> therefore: extension of the automata model with memory

Gabriele Roger (University of Basel) Theory of Computer Science

April 1, 2020 20 /

34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

of the stack Push

» push: puts an object on top [] \' /,-
Pop

P> pop: removes the object at the
top of the stack

i

> peek: returns the top object
without removing it

German: Keller, Stapel

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 21 / 34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Push-down Automata: Visually

Input tape

[Tnfpfult]

—_

Read head
Stack access
——

Push-down
automaton B | Stack

#]

German: Kellerautomat, Eingabeband, Lesekopf, Kellerzugriff

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 22 / 34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Push-down Automata: Definition

Definition (Push-down Automaton)
A push-down automaton (PDA) is a 6-tuple M = (Q,%,T, 0, qo, #)
with

> Q@ finite set of states

P> 3 the input alphabet
» [the stack alphabet
>

0:Q x (XU{e}) xT — P(Q x ') the transition function
(where Pk is the set of all finite subsets)

> qo € Q the start state
> # c [the bottommost stack symbol

German: Kellerautomat, Eingabealphabet, Kelleralphabet,
Uberflihrungsfunktion

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 23 / 34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Push-down Automata: Transition Function

Let M =(Q,X%,T,d,qo, #) be a push-down automaton.

What is the Intuitive Meaning of the Transition Function 67
> (¢, B1...By) €d(qg,a,A): If Misin state g, reads symbol a
and has A as the topmost stack symbol,
then M can transition to ¢’ in the next step while replacing A
with By ... By (afterwards Bj is the topmost stack symbol)

a,A— By...By
q q

> special case a = ¢ is allowed (spontaneous transition)

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 24 / 34

C5. Context-free Languages: Normal Form and PDA

Push-down Automata: Example

a,h — AA
a,B— AB i)

a # — A# q a,A—e , z’g::i
b,A — BA b,B ¢ 9 g
b,B — BB ’
b,# — B#

M= ({q,q9'},{a,b}, {A,B, #},0, g, #) with

(g, a,A) = {(q,A4),(q’,€)} 6(q,b,A) = {(q,BA)} 6(q,e,4) =10

d(q,2,B) = {(q,AB)} 6(q,b,B) = {<q,BB>a<q’,6>}5(q,€,B)=@

6(q,a,4) = {(q,A#)} 5(q,b,#) ={ q,B#)} 6(q,e,4) =
6(q',a,8) = {(q,e)} 6(q',b,4) = 5(q',e,8) =
(q',a,B) =10 (q',b,B) = {<q e)} i(q',e,B) =
o(qa,#) =10 3(q',b, #) = 5(q’6#)—{q e)}

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020

Push-Down Automata

25 / 34

C5. Context-free Languages: Normal Form and PDA

Push-down Automata: Configuration

Definition (Configuration of a Push-down Automaton)

A configuration of a push-down automaton M =
is given by a triple c € Q@ x X* x I,

German: Konfiguration

Example

Configuration
(q,ut, BACH).

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020

<Q7 za ra 67 do, #>

Push-Down Automata

26 / 34

C5. Context-free Languages: Normal Form and PDA

Push-down Automata: Steps

Definition (Transition/Step of a Push-down Automaton)

We write ¢ -y ¢’ if a push-down automaton M = (Q, X, T, 0, qo, #)
can transition from configuration ¢ to configuration ¢’ in one step.
Exactly the following transitions are possible:

(q,al...a,,,Al...Am> l_M
(q’,ag...a,,,Bl...BkAg...Am)

if (¢/,By...Bk) € 6(q, a1, A1)
(q',3132 ...dn, Bl ce BkAg .. .Am>
if <q/, B;... Bk) S 5(q,e,A1)

German: Ubergang
If M is clear from context, we only write ¢ - ¢’.

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020

Push-Down Automata

27 / 34

C5. Context-free Languages: Normal Form and PDA

Push-down Automata: Reachability of Configurations

Definition (Reachable Configuration)

Configuration ¢’ is reachable from configuration ¢ in PDA M
(c 3y) if there are configurations cp, ..., ¢, (n > 0) where
> o =c,
» c¢ibpcipq forallie{0,...,n—1}, and
> c,=c.

German: ¢’ ist in M von c erreichbar

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020

Push-Down Automata

28 / 34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Push-down Automata: Recognized Words

Definition (Recognized Word of a Push-down Automaton)

PDA M = (Q,%,T,0, qo, #) recognizes the word w = a; ... a,
iff the configuration (q,¢,) (word processed and stack empty)
for some g € Q is reachable from the start configuration (qo, w, #).

M recognizes w iff (qo, w,#) I}, (q,¢€,¢) for some g € Q.

German: M erkennt w, Startkonfiguration

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 29 / 34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Push-down Automata: Recognized Word Example

a,A — AA
a,B — AB i)

a,# — At . aA—e) E’g:z
b,A — BA b,B ¢ 9 g
b,B — BB ’
b,# — B#

example: this PDA recognizes bbabbabb ~~ blackboard

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 30 / 34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

Push-down Automata: Accepted Language

Definition (Accepted Language of a Push-down Automaton)
Let M be a push-down automaton with input alphabet X.
The language accepted by M is defined as

L(M) ={w € £* | M recognizes w}.

example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 31 /34

C5. Context-free Languages: Normal Form and PDA Push-Down Automata

PDAs Accept Exactly the Context-free Languages

Theorem
A language L is context-free if and only if
L is accepted by a push-down automaton.

Gabriele Roger (University of Basel) Theory of Computer Science April 1, 2020 32 / 34

C5. Context-free Languages: Normal Form and PDA

C5.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science

April 1, 2020

Summary

33/

C5. Context-free Languages: Normal Form and PDA

Summary

» Every context-free la

nguage has a grammar

in Chomsky normal form. All rules have form

> A — BC with variables A, B, C, or
> A — a with variable A, terminal symbol a, or

» S — ¢ with start

variable S.

» Push-down automata (PDAs) extend NFAs with memory.

v

PDAs accept not with end states but with an empty stack.

» The languages accepted by PDAs are exactly
the context-free languages.

Gabriele Roger (University of Basel)

Theory of Computer Science April 1, 2020

Summary

34 / 34

	Context-free Grammars and -Rules
	

	Chomsky Normal Form
	

	Push-Down Automata
	

	Summary
	

