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Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?
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How can you you show that a language
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m Direct proof that no regular grammar exists
that generates the language
~ difficult in general
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Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?

m Direct proof that no regular grammar exists
that generates the language
~ difficult in general

m Pumping lemma: use a necessary property
that holds for all regular languages.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Pumping Lemma

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

Q|v>1,
Q |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Question: what if L is finite?
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Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....
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Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Proof.

For regular L there exists a DFA M = (Q, X, ¢, qo, E) with
L(M) = L. We show that n = |Q| has the desired properties.

|
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Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

|

Proof.
For regular L there exists a DFA M = (Q, X, ¢, qo, E) with
L(M) = L. We show that n = |Q| has the desired properties.

Consider an arbitrary x € £L(M) with length |x| > |Q|. Including
the start state, M visits |x| + 1 states while reading x. Because of
|x| > | @] at least one state has to be visited twice.

N
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Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Proof (continued).

Choose a split x = uvw so M is in the same state after reading u
and after reading uv. Obviously, we can choose the split in a way
that |v| > 1 and |uv| < | Q)| are satisfied.
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Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Proof (continued).

The word v corresponds to a loop in the DFA after reading u and
can thus be repeated arbitrarily often. Every subsequent
continuation with w ends in the same end state as reading x.
Therefore uv'w € L(M) = L is satisfied for all i = 0,1,2,.... []

y
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Pumping Lemma: Application

Using the pumping lemma (PL):

Proof of Nonregularity

m If L is regular, then the pumping lemma holds for L.

m By contraposition: if the PL does not hold for L,
then L cannot be regular.

m That is: if there is no n € N with the properties of the PL,
then L cannot be regular.
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Pumping Lemma: Caveat

Caveat:
The pumping lemma is a necessary condition for a language
to be regular, but not a sufficient one.

~+ there are languages that satisfy the pumping lemma
conditions but are not regular

~ for such languages, other methods are needed to show
that they are not regular (e.g., the Myhill-Nerode theorem)
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Pumping Lemma: Example

The language L = {a"b" | n € N} is not regular. I

Proof.
Assume L is regular. Then let p be a pumping number for L.

The word x = aPb” is in L and has length > p.
Let x = uvw be a split with the properties of the PL.

Then the word x’ = uv2w is also in L. Since |uv| < p, uv consists

only of symbols a and x’ = altla2lVlaP—luvipp = aPtivipe,
Since |v| > 1 it follows that p + |v| # p and thus x" ¢ L.
This is a contradiction to the PL. ~» L is not regular. O
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Pumping Lemma: Another Example |

The language L = {ab"ac™"? | n € N} is not regular.

Proof.
Assume L is regular. Then let p be a pumping number for L.

The word x = abPacP*? is in L and has length > p.

Let x = uvw be a split with the properties of the PL.

From |uv| < p and |v| > 1 we know that uv consists of one a
followed by at most p — 1 bs.

We distinguish two cases, |u| =0 and |u| > 0.
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Pumping Lemma: Another Example I

The language L = {ab"ac"™"? | n € N} is not regular.

Proof (continued).

If |u| =0, then word v starts with an a.

Hence, uv®w = bP~1¥I+1acP*2 does not start with symbol a
and is therefore not in L. This is a contradiction to the PL.

If |u| > 0, then word v consists only of bs.

Consider uv®w = abP~"lacP*2. As |v| > 1, this word does not
contain two more cs than bs and is therefore not in language L.
This is a contradiction to the PL.

We have in all cases a contradiction to the PL.
~» L is not regular. [
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Closure Properties

How can you combine
regular languages in a way to get
another regular language
as a result?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Closure Properties: Operations

Let L and L’ be regular languages over ¥ and ¥/, respectively.

We consider the following operations:
munion LUL ={w|welorwel'} overUY
m intersection LN L' ={w|welLandwe L'} overLNY’
m complement L ={w € ¥* | w ¢ L} over ¥

m concatenation LL' ={uv|ue Land vel'} over UYL

m special case: L" = L""1L, where L% = {¢}
m also called product

m star L* = J,oo LK over ©

German: Abschlusseigenschaften, Vereinigung, Schnitt, Komplement,
Produkt, Stern
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Closure Properties

Definition (Closure)

Let IC be a class of languages.
Then K is closed. . .

.under union if L, L’ € K implies LUL" € K
..under intersection if L, L’ € K implies LN L' € K
..under complement if L € K implies L € K

.. under concatenation if L, L’ € K implies LL' € K
..under star if L € K implies L* €

German: Abgeschlossenheit, C ist abgeschlossen unter Vereinigung

(Schnitt, Komplement, Produkt, Stern)
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regular languages are closed under:
union

intersection

complement

concatenation

star
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Closure Properties

Proof.
Closure under union, concatenation, and star follows because

for regular expressions « and 3, the expressions
(a|B), () and (a*) describe the corresponding languages.
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Closure Properties

Proof.

Closure under union, concatenation, and star follows because
for regular expressions « and 3, the expressions

(a|B), (af) and («*) describe the corresponding languages.

Complement: Let M = (Q, X, 0, qo, E) be a DFA with C_(M) =L
Then M’ = (Q,%,6,qo, Q \ E) is a DFA with L(M') = L.
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Closure Properties

Proof.

Closure under union, concatenation, and star follows because
for regular expressions « and 3, the expressions

(a|B), (af) and («*) describe the corresponding languages.

Complement: Let M = (Q, X, 0, qo, E) be a DFA with £_(M) =L
Then M’ = (Q,%,6,qo, Q \ E) is a DFA with L(M') = L.

Intersection: Let My = (@1, X1, 01, qo1, E1) and
My = (Q2, X2, 02, o2, E2) be DFAs. The product automaton

M = (Q1 x @, %1 NX2,0,(qo1,q02), E1 x E2)

with 6({(q1, 2), a) = (01(q1, a), 02(q2, a))
accepts L(M) = L(Mq) N L(My).

]

German: Kreuzproduktautomat
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Decision Problems and Decidability (1)

“Intuitive Definition:" Decision Problem, Decidability

A decision problem is an algorithmic problem where
m for a given input
m an algorithm determines if the input has a given property

m and then produces the output “yes” or “no” accordingly.

A decision problem is decidable if an algorithm for it
(that always gives the correct answer) exists.

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe,
entscheidbar

Note: “exists” # "is known”
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Decision Problems and Decidability (2)

Notes:
m not a formal definition: we did not formally define
“algorithm”, “input”, “output” etc. (which is not trivial)
m lack of a formal definition makes it difficult to prove
that something is not decidable
~ studied thoroughly in the next part of the course
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Decision Problems: Example

For now we describe decision problems in a semi-formal
“given” / “question” way:

Example (Emptiness Problem for Regular Languages)

The emptiness problem Py for regular languages
is the following problem:

Given: regular grammar G

Question: Is L(G) = 0?

German: Leerheitsproblem
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Word Problem

Definition (Word Problem for Regular Languages)

The word problem P for regular languages is:

Given: regular grammar G with alphabet ¥
and word w € X*
Question: Is w € L(G)?

German: Wortproblem (fiir reguldre Sprachen)
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Decidability: Word Problem

The word problem for regular languages is decidable. I

Proof.

Construct a DFA M with £L(M) = L(G).
(The proofs in Chapter C2 describe a possible method.)

Simulate M on input w. The simulation ends after |w| steps.

The DFA M is an end state after this iff w € £(G).
Print “yes" or “no" accordingly. [
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Emptiness Problem

Definition (Emptiness Problem for Regular Languages)

The emptiness problem Py for regular languages is:

Given: regular grammar G
Question: Is L(G) = 0?

German: Leerheitsproblem
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DeC|dab|I|ty Emptlness Problem

The emptiness problem for regular languages is decidable. I

Proof
Construct a DFA M with £L(M) = L(G).

We have £(G) = () iff in the transition diagram of M
there is no path from the start state to any end state.

This can be checked with standard graph algorithms
(e.g., breadth-first search). O
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Finiteness Problem

Definition (Finiteness Problem for Regular Languages)

The finiteness problem P.. for regular languages is:

Given: regular grammar G
Question: Is |£(G)| < 00?

German: Endlichkeitsproblem
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Decidability: Finiteness Problem

The finiteness problem for regular languages is decidable. I

Proof.
Construct a DFA M with £L(M) = L(G).

We have |£(G)| = oo iff in the transition diagram of M
there is a cycle that is reachable from the start state
and from which an end state can be reached.

This can be checked with standard graph algorithms. [
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Intersection Problem

Definition (Intersection Problem for Regular Languages)

The intersection problem Pp for regular languages is:

Given: regular grammars G and G’
Question: Is L(G) N L(G') = (7

German: Schnittproblem
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Decidability: Intersection Problem

The intersection problem for regular languages is decidable. I

Using the closure of regular languages under intersection,
we can construct (e.g., by converting to DFAs, constructing

the product automaton, then converting back to a grammar)

a grammar G” with £(G") = L(G) N L(G’)

and use the algorithm for the emptiness problem Py. O
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Equivalence Problem

Definition (Equivalence Problem for Regular Languages)

The equivalence problem P_ for regular languages is:

Given: regular grammars G and G’
Question: Is £(G) = L(G')?

German: Aquivalenzproblem
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Decidability: Equivalence Problem

The equivalence problem for regular languages is decidable. I

Summary

Proof.
In general for languages L and L', we have

L="Liff(LOLYu(LnL)=9.

The regular languages are closed under intersection, union
and complement, and we know algorithms for these operations.

We can therefore construct a grammar for (LN L") U (LN L")
and use the algorithm for the emptiness problem Py.

Ol

v
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Summary

m The pumping lemma can be used to show
that a language is not regular.

m The regular languages are closed under all usual operations
(union, intersection, complement, concatenation, star).

m All usual decision problems (word problem, emptiness,
finiteness, intersection, equivalence) are decidable
for regular languages.

oe
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