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Decidabi\}ty - - Pumping Lemma

Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?

» Direct proof that no regular grammar exists
that generates the language
~~ difficult in general

» Pumping lemma: use a necessary property
that holds for all regular languages.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Decidabi\}ty Pumping Lemma

Pumping Lemma

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N

(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

Q |v[>1,
Q |uv| < n, and
Q@ wwel foralli=0,1,2,....

Question: what if L is finite?
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Deddabi\’\'ty - - Pumping Lemma

Pumping Lemma: Proof

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:
Q |v|>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Proof.

For regular L there exists a DFA M = (Q, ¥, 0, qo, E) with

L(M) = L. We show that n = |Q| has the desired properties.
Consider an arbitrary x € L(M) with length |x| > |Q|. Including
the start state, M visits |x| + 1 states while reading x. Because of
|x| > | Q)| at least one state has to be visited twice.
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Decidabi\’ity - - Pumping Lemma

Pumping Lemma: Proof

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:
Q |v|>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....
Proof (continued).
Choose a split x = uvw so M is in the same state after reading u

and after reading uv. Obviously, we can choose the split in a way
that |[v| > 1 and |uv| < | Q)] are satisfied.
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Deddabi\’\'ty - - Pumping Lemma

Pumping Lemma: Proof

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:
Q |v|>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Proof (continued).

The word v corresponds to a loop in the DFA after reading v and
can thus be repeated arbitrarily often. Every subsequent
continuation with w ends in the same end state as reading x.
Therefore uv'w € L(M) = L is satisfied for all i = 0,1,2,.... [
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Decidabi\}ty Pumping Lemma

Pumping Lemma: Application

Using the pumping lemma (PL):
Proof of Nonregularity
> |f L is regular, then the pumping lemma holds for L.
» By contraposition: if the PL does not hold for L,
then L cannot be regular.
» That is: if there is no n € N with the properties of the PL,
then L cannot be regular.
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Decidabi\}ty - - Pumping Lemma

Pumping Lemma: Caveat

Caveat:
The pumping lemma is a necessary condition for a language
to be regular, but not a sufficient one.
~> there are languages that satisfy the pumping lemma
conditions but are not regular

~ for such languages, other methods are needed to show
that they are not regular (e.g., the Myhill-Nerode theorem)
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Deddabi\’\'ty - - Pumping Lemma

Pumping Lemma: Example

Example
The language L = {a"b" | n € N} is not regular.

Proof.
Assume L is regular. Then let p be a pumping number for L.

The word x = aPbP is in L and has length > p.

Let x = uvw be a split with the properties of the PL.
Then the word x’ = uv?w is also in L. Since |uv| < p, uv consists
only of symbols a and x’ = altla2lVlaP—luvipp = aPtivipe,

Since |v| > 1 it follows that p + |v| # p and thus x" ¢ L.

This is a contradiction to the PL. ~~ L is not regular. O
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Deddabi\’\'ty - - Pumping Lemma

Pumping Lemma: Another Example |

Example
The language L = {ab"ac™? | n € N} is not regular.

Proof.
Assume L is regular. Then let p be a pumping number for L.

The word x = abPacP*? is in L and has length > p.
Let x = uvw be a split with the properties of the PL.

From |uv| < p and |v| > 1 we know that uv consists of one a
followed by at most p — 1 bs.

We distinguish two cases, |u| =0 and |u| > 0.
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Deddabi\’\'ty - - Pumping Lemma

Pumping Lemma: Another Example I

Example
The language L = {ab"ac""? | n € N} is not regular.

Proof (continued).

If |u| =0, then word v starts with an a.

Hence, uv®w = bP~I¥I+1acP*2 does not start with symbol a
and is therefore not in L. This is a contradiction to the PL.

If |u| > 0, then word v consists only of bs.

Consider uv®w = abP~"lacP2. As |v| > 1, this word does not
contain two more cs than bs and is therefore not in language L.
This is a contradiction to the PL.

We have in all cases a contradiction to the PL.
~+ L is not regular. O
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Decidabiﬁty Closure Properties

Closure Properties

How can you combine
regular languages in a way to get
another regular language
as a result?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Decidability Closure Properties

Closure Properties: Operations

Let L and L’ be regular languages over ¥ and ¥/, respectively.

We consider the following operations:

union LUL' ={w |weLorwel'} over LUY'
intersection LN L' ={w|we Land we L'} over L NY'
complement L = {w € Z* | w ¢ L} over ¥

concatenation LL' ={uv|u € Land ve L'} over tUY’

> special case: L" = L""1L, where L° = {¢}
» also called product

> star L* = J,so LK over ©

vvyyy

German: Abschlusseigenschaften, Vereinigung, Schnitt, Komplement,
Produkt, Stern
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Decidability Closure Properties

Closure Properties

Definition (Closure)
Let K be a class of languages.

Then K is closed. . .
» ...under union if L,L" € K implies LUL € K
» . ..under intersection if L, L’ € K implies LN L € K
» ...under complement if L € K implies L € K
» .. .under concatenation if L, L’ € K implies LL' € K
» .. .under star if L € K implies L* € K

German: Abgeschlossenheit, K ist abgeschlossen unter Vereinigung
(Schnitt, Komplement, Produkt, Stern)

Gabriele Roger (University of Basel) Theory of Computer Science March 30, 2020 18 / 35



Decidability

Closure Properties of Regular Languages

Theorem
The regular languages are closed under:

>

>
>
>
>
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Decidability Closure Properties

Closure Properties

Proof.

Closure under union, concatenation, and star follows because
for regular expressions « and 3, the expressions

(a|B), (aB) and (a*) describe the corresponding languages.

Complement: Let M = (Q, X, 6, qo, E) be a DFA with E_(I\/I) =L
Then M’ = (Q,X,6,q0, Q \ E) is a DFA with L(M') = L.

Intersection: Let My = (Q1, X1, 01, qo1, E1) and
My = (Q2, X2, 02, o2, E2) be DFAs. The product automaton

M = (Q1 x @2, X1 N X2,9,(q01,go2), E1 x Ep)

with 6((q1, g2), ) = (d1(q1, a), 92(g2, a))
accepts L(M) = L(My) N L(Mo). O

German: Kreuzproduktautomat
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Decidabiﬁty Decidability

C4.3 Decidability
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Decidability - - Decidability

Decision Problems and Decidability (1)

“Intuitive Definition:" Decision Problem, Decidability

A decision problem is an algorithmic problem where
> for a given input
» an algorithm determines if the input has a given property

» and then produces the output “yes” or “no” accordingly.

A decision problem is decidable if an algorithm for it
(that always gives the correct answer) exists.

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe,
entscheidbar

Note: “exists” # “is known"
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Decidability - - Decidability

Decision Problems and Decidability (2)

Notes:
> not a formal definition: we did not formally define
“algorithm”, “input”, “output” etc. (which is not trivial)
» lack of a formal definition makes it difficult to prove
that something is not decidable

~ studied thoroughly in the next part of the course
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Decidability

Decision Problems: Example

For now we describe decision problems in a semi-formal
“given” / “question” way:

Example (Emptiness Problem for Regular Languages)
The emptiness problem Py for regular languages
is the following problem:

Given: regular grammar G
Question: Is L(G) = 07

German: Leerheitsproblem
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Decidability

Word Problem

Definition (Word Problem for Regular Languages)
The word problem P¢ for regular languages is:

Given: regular grammar G with alphabet ¥
and word w € X*
Question: Is w € L(G)?

German: Wortproblem (fiir reguldre Sprachen)
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Decidability - - Decidability

Decidability: Word Problem

Theorem
The word problem for regular languages is decidable.

Proof.
Construct a DFA M with £(M) = L(G).
(The proofs in Chapter C2 describe a possible method.)

Simulate M on input w. The simulation ends after |w| steps.

The DFA M is an end state after this iff w € L(G).
Print "yes" or “no" accordingly. O
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Decidability

Emptiness Problem

Definition (Emptiness Problem for Regular Languages)
The emptiness problem Py for regular languages is:

Given: regular grammar G

Question: Is L(G) = 0?

German: Leerheitsproblem
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Decidability - - Decidability

Decidability: Emptiness Problem

Theorem
The emptiness problem for regular languages is decidable.

Proof.
Construct a DFA M with £L(M) = L(G).

We have £(G) = ( iff in the transition diagram of M
there is no path from the start state to any end state.

This can be checked with standard graph algorithms
(e.g., breadth-first search). O
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Decidabiﬁty

Finiteness Problem

Definition (Finiteness Problem for Regular Languages)
The finiteness problem P for regular languages is:

Given: regular grammar G
Question: Is |[£(G)] < 00?

German: Endlichkeitsproblem
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Decidability - - Decidability

Decidability: Finiteness Problem

Theorem
The finiteness problem for regular languages is decidable.

Proof.
Construct a DFA M with £(M) = L(G).

We have |£(G)| = oo iff in the transition diagram of M
there is a cycle that is reachable from the start state
and from which an end state can be reached.

This can be checked with standard graph algorithms. O
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Decidability o - Decidability

Intersection Problem

Definition (Intersection Problem for Regular Languages)
The intersection problem Pp for regular languages is:

Given: regular grammars G and G’
Question: Is L(G) N L(G") = (7

German: Schnittproblem
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Decidability - - Decidability

Decidability: Intersection Problem

Theorem
The intersection problem for regular languages is decidable.

Proof.

Using the closure of regular languages under intersection,

we can construct (e.g., by converting to DFAs, constructing

the product automaton, then converting back to a grammar)

a grammar G” with £L(G") = L(G) N L(G’)

and use the algorithm for the emptiness problem Py. O
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Decidability Decidability

Equivalence Problem

Definition (Equivalence Problem for Regular Languages)
The equivalence problem P_ for regular languages is:

Given: regular grammars G and G’
Question: Is L(G) = L(G)?

German: Aquivalenzproblem
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Decidability Decidability

Decidability: Equivalence Problem

Theorem
The equivalence problem for regular languages is decidable.

Proof.
In general for languages L and L', we have

L="Liff(LnL)yu(LnL)=9.

The regular languages are closed under intersection, union
and complement, and we know algorithms for these operations.

We can therefore construct a grammar for (LN L')u (LN L")
and use the algorithm for the emptiness problem Py. O
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Decidability

Summary

» The pumping lemma can be used to show
that a language is not regular.

» The regular languages are closed under all usual operations
(union, intersection, complement, concatenation, star).

» All usual decision problems (word problem, emptiness,
finiteness, intersection, equivalence) are decidable
for regular languages.
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