

Theory of Computer Science

C4. Regular Languages: Pumping Lemma, Closure Properties and Decidability

Gabriele Röger

University of Basel

March 30, 2020

Theory of Computer Science

March 30, 2020 — C4. Regular Languages: Pumping Lemma, Closure Properties and Decidability

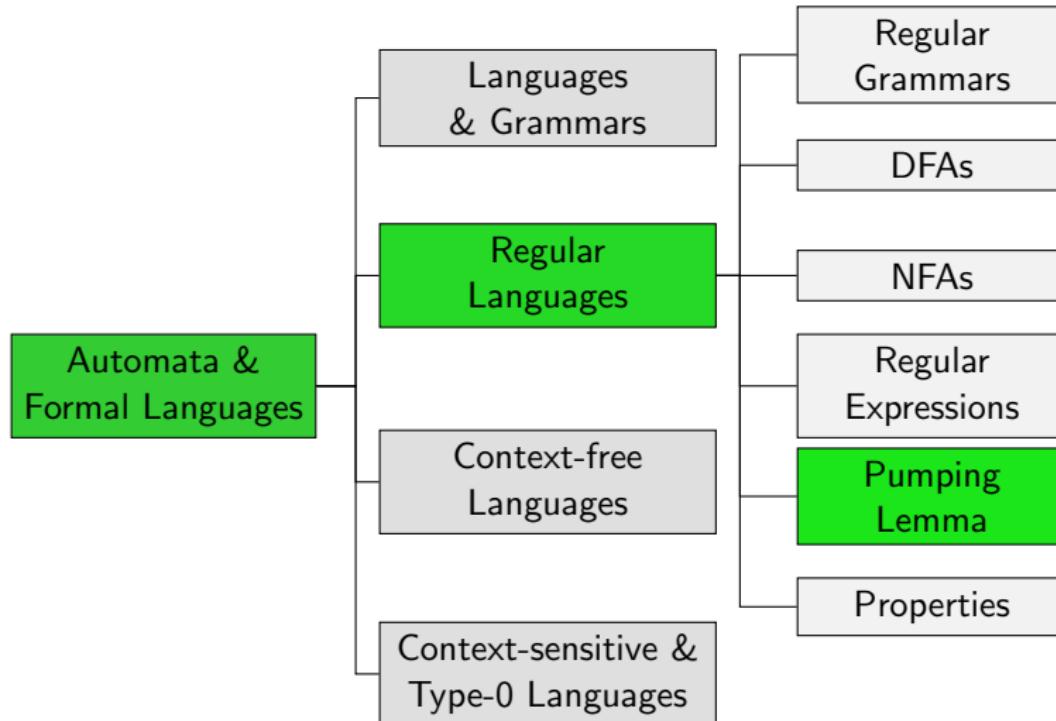
C4.1 Pumping Lemma

C4.2 Closure Properties

C4.3 Decidability

C4.1 Pumping Lemma

Overview



Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you show that a language is **not** regular?

- ▶ Direct proof that no regular grammar exists that generates the language
~~ difficult in general
- ▶ **Pumping lemma:** use a necessary property that holds for all regular languages.

Picture courtesy of imagerymajestic.com / FreeDigitalPhotos.net

Pumping Lemma

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an $n \in \mathbb{N}$ (a *pumping number* for L) such that all words $x \in L$ with $|x| \geq n$ can be split into $x = uvw$ with the following properties:

- ① $|v| \geq 1$,
- ② $|uv| \leq n$, and
- ③ $uv^i w \in L$ for all $i = 0, 1, 2, \dots$

Question: what if L is finite?

Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an $n \in \mathbb{N}$ (a *pumping number* for L) such that all words $x \in L$ with $|x| \geq n$ can be split into $x = uvw$ with the following properties:

- ① $|v| \geq 1$,
- ② $|uv| \leq n$, and
- ③ $uv^i w \in L$ for all $i = 0, 1, 2, \dots$

Proof.

For regular L there exists a DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ with $\mathcal{L}(M) = L$. We show that $n = |Q|$ has the desired properties.

Consider an arbitrary $x \in \mathcal{L}(M)$ with length $|x| \geq |Q|$. Including the start state, M visits $|x| + 1$ states while reading x . Because of $|x| \geq |Q|$ at least one state has to be visited twice. ...

Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an $n \in \mathbb{N}$ (a *pumping number* for L) such that all words $x \in L$ with $|x| \geq n$ can be split into $x = uvw$ with the following properties:

- ① $|v| \geq 1$,
- ② $|uv| \leq n$, and
- ③ $uv^i w \in L$ for all $i = 0, 1, 2, \dots$

Proof (continued).

Choose a split $x = uvw$ so M is in the same state after reading u and after reading uv . Obviously, we can choose the split in a way that $|v| \geq 1$ and $|uv| \leq |Q|$ are satisfied.

...

Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an $n \in \mathbb{N}$ (a *pumping number* for L) such that all words $x \in L$ with $|x| \geq n$ can be split into $x = uvw$ with the following properties:

- ① $|v| \geq 1$,
- ② $|uv| \leq n$, and
- ③ $uv^i w \in L$ for all $i = 0, 1, 2, \dots$

Proof (continued).

The word v corresponds to a loop in the DFA after reading u and can thus be repeated arbitrarily often. Every subsequent continuation with w ends in the same end state as reading x . Therefore $uv^i w \in \mathcal{L}(M) = L$ is satisfied for all $i = 0, 1, 2, \dots$ □

Pumping Lemma: Application

Using the pumping lemma (PL):

Proof of Nonregularity

- ▶ If L is regular, then the pumping lemma holds for L .
- ▶ By contraposition: if the PL does not hold for L , then L cannot be regular.
- ▶ That is: if there is no $n \in \mathbb{N}$ with the properties of the PL, then L cannot be regular.

Pumping Lemma: Caveat

Caveat:

The pumping lemma is a **necessary condition** for a language to be regular, but not a **sufficient one**.

- ↪ there are languages that satisfy the pumping lemma conditions but are **not** regular
- ↪ for such languages, other methods are needed to show that they are not regular (e.g., the **Myhill-Nerode theorem**)

Pumping Lemma: Example

Example

The language $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof.

Assume L is regular. Then let p be a pumping number for L .

The word $x = a^p b^p$ is in L and has length $\geq p$.

Let $x = uvw$ be a split with the properties of the PL.

Then the word $x' = uv^2w$ is also in L . Since $|uv| \leq p$, uv consists only of symbols a and $x' = a^{|u|} a^{2|v|} a^{p-|uv|} b^p = a^{p+|v|} b^p$.

Since $|v| \geq 1$ it follows that $p + |v| \neq p$ and thus $x' \notin L$.

This is a contradiction to the PL. $\rightsquigarrow L$ is not regular. □

Pumping Lemma: Another Example I

Example

The language $L = \{ab^nac^{n+2} \mid n \in \mathbb{N}\}$ is not regular.

Proof.

Assume L is regular. Then let p be a pumping number for L .

The word $x = ab^p ac^{p+2}$ is in L and has length $\geq p$.

Let $x = uvw$ be a split with the properties of the PL.

From $|uv| \leq p$ and $|v| \geq 1$ we know that uv consists of one a followed by at most $p - 1$ bs.

We distinguish two cases, $|u| = 0$ and $|u| > 0$.

...

Pumping Lemma: Another Example II

Example

The language $L = \{ab^nac^{n+2} \mid n \in \mathbb{N}\}$ is not regular.

Proof (continued).

If $|u| = 0$, then word v starts with an a.

Hence, $uv^0w = b^{p-|v|+1}ac^{p+2}$ does not start with symbol a and is therefore not in L . This is a contradiction to the PL.

If $|u| > 0$, then word v consists only of bs.

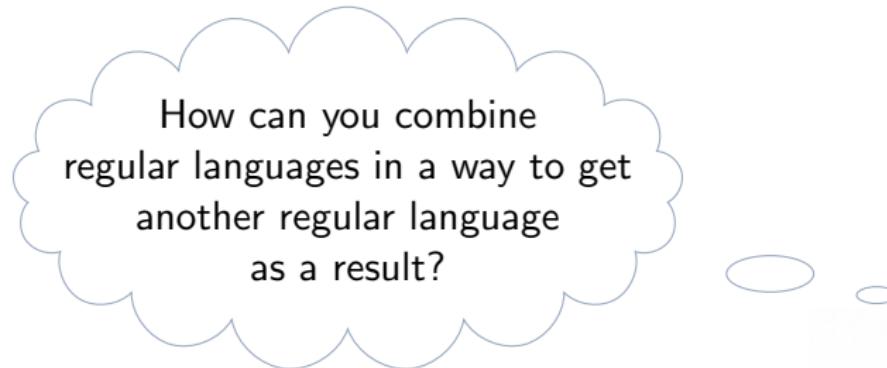
Consider $uv^0w = ab^{p-|v|}ac^{p+2}$. As $|v| \geq 1$, this word does not contain two more cs than bs and is therefore not in language L . This is a contradiction to the PL.

We have in all cases a contradiction to the PL.

∴ L is not regular.

C4.2 Closure Properties

Closure Properties



Picture courtesy of stockimages / FreeDigitalPhotos.net

Closure Properties: Operations

Let L and L' be regular languages over Σ and Σ' , respectively.

We consider the following operations:

- ▶ **union** $L \cup L' = \{w \mid w \in L \text{ or } w \in L'\}$ over $\Sigma \cup \Sigma'$
- ▶ **intersection** $L \cap L' = \{w \mid w \in L \text{ and } w \in L'\}$ over $\Sigma \cap \Sigma'$
- ▶ **complement** $\bar{L} = \{w \in \Sigma^* \mid w \notin L\}$ over Σ
- ▶ **concatenation** $LL' = \{uv \mid u \in L \text{ and } v \in L'\}$ over $\Sigma \cup \Sigma'$
 - ▶ special case: $L^n = L^{n-1}L$, where $L^0 = \{\varepsilon\}$
 - ▶ also called **product**
- ▶ **star** $L^* = \bigcup_{k \geq 0} L^k$ over Σ

German: Abschlusseigenschaften, Vereinigung, Schnitt, Komplement, Produkt, Stern

Closure Properties

Definition (Closure)

Let \mathcal{K} be a class of languages.

Then \mathcal{K} is **closed**...

- ▶ ... under union if $L, L' \in \mathcal{K}$ implies $L \cup L' \in \mathcal{K}$
- ▶ ... under intersection if $L, L' \in \mathcal{K}$ implies $L \cap L' \in \mathcal{K}$
- ▶ ... under complement if $L \in \mathcal{K}$ implies $\bar{L} \in \mathcal{K}$
- ▶ ... under concatenation if $L, L' \in \mathcal{K}$ implies $LL' \in \mathcal{K}$
- ▶ ... under star if $L \in \mathcal{K}$ implies $L^* \in \mathcal{K}$

German: Abgeschlossenheit, \mathcal{K} ist abgeschlossen unter Vereinigung
(Schnitt, Komplement, Produkt, Stern)

Closure Properties of Regular Languages

Theorem

The regular languages are closed under:

- ▶ *union*
- ▶ *intersection*
- ▶ *complement*
- ▶ *concatenation*
- ▶ *star*

Closure Properties

Proof.

Closure under **union**, **concatenation**, and **star** follows because for regular expressions α and β , the expressions $(\alpha|\beta)$, $(\alpha\beta)$ and (α^*) describe the corresponding languages.

Complement: Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA with $\mathcal{L}(M) = L$. Then $M' = \langle Q, \Sigma, \delta, q_0, Q \setminus E \rangle$ is a DFA with $\mathcal{L}(M') = \bar{L}$.

Intersection: Let $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_{01}, E_1 \rangle$ and $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_{02}, E_2 \rangle$ be DFAs. The **product automaton**

$$M = \langle Q_1 \times Q_2, \Sigma_1 \cap \Sigma_2, \delta, \langle q_{01}, q_{02} \rangle, E_1 \times E_2 \rangle$$

$$\text{with } \delta(\langle q_1, q_2 \rangle, a) = \langle \delta_1(q_1, a), \delta_2(q_2, a) \rangle$$

accepts $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$.

German: Kreuzproduktautomat

C4.3 Decidability

Decision Problems and Decidability (1)

“Intuitive Definition:” Decision Problem, Decidability

A **decision problem** is an algorithmic problem where

- ▶ for a given **input**
- ▶ an **algorithm** determines if the input has a given **property**
- ▶ and then produces the **output** “yes” or “no” accordingly.

A decision problem is **decidable** if an algorithm for it (that always gives the correct answer) exists.

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe, entscheidbar

Note: “exists” \neq “is known”

Decision Problems and Decidability (2)

Notes:

- ▶ not a formal definition: we did not formally define “algorithm”, “input”, “output” etc. (which is not trivial)
- ▶ lack of a formal definition makes it difficult to prove that something is **not** decidable
- ~~> studied thoroughly in the next part of the course

Decision Problems: Example

For now we describe decision problems in a semi-formal “given” / “question” way:

Example (Emptiness Problem for Regular Languages)

The **emptiness problem** P_\emptyset for regular languages is the following problem:

Given: regular grammar G

Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

Word Problem

Definition (Word Problem for Regular Languages)

The word problem P_{\in} for regular languages is:

Given: regular grammar G with alphabet Σ
and word $w \in \Sigma^*$

Question: Is $w \in \mathcal{L}(G)$?

German: Wortproblem (für reguläre Sprachen)

Decidability: Word Problem

Theorem

*The word problem for regular languages is **decidable**.*

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

(The proofs in Chapter C2 describe a possible method.)

Simulate M on input w . The simulation ends after $|w|$ steps.

The DFA M is an end state after this iff $w \in \mathcal{L}(G)$.

Print “yes” or “no” accordingly.

Emptiness Problem

Definition (Emptiness Problem for Regular Languages)

The **emptiness problem** P_\emptyset for regular languages is:

Given: regular grammar G

Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

Decidability: Emptiness Problem

Theorem

*The emptiness problem for regular languages is **decidable**.*

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

We have $\mathcal{L}(G) = \emptyset$ iff in the transition diagram of M there is no path from the start state to any end state.

This can be checked with standard graph algorithms (e.g., breadth-first search). □

Finiteness Problem

Definition (Finiteness Problem for Regular Languages)

The **finiteness problem P_∞ for regular languages** is:

Given: regular grammar G

Question: Is $|\mathcal{L}(G)| < \infty$?

German: Endlichkeitsproblem

Decidability: Finiteness Problem

Theorem

*The finiteness problem for regular languages is **decidable**.*

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

We have $|\mathcal{L}(G)| = \infty$ iff in the transition diagram of M there is a cycle that is reachable from the start state and from which an end state can be reached.

This can be checked with standard graph algorithms. □

Intersection Problem

Definition (Intersection Problem for Regular Languages)

The intersection problem P_{\cap} for regular languages is:

Given: regular grammars G and G'

Question: Is $\mathcal{L}(G) \cap \mathcal{L}(G') = \emptyset$?

German: Schnittproblem

Decidability: Intersection Problem

Theorem

*The intersection problem for regular languages is **decidable**.*

Proof.

Using the closure of regular languages under intersection, we can construct (e.g., by converting to DFAs, constructing the product automaton, then converting back to a grammar) a grammar G'' with $\mathcal{L}(G'') = \mathcal{L}(G) \cap \mathcal{L}(G')$ and use the algorithm for the emptiness problem P_\emptyset . □

Equivalence Problem

Definition (Equivalence Problem for Regular Languages)

The equivalence problem $P_=_$ for regular languages is:

Given: regular grammars G and G'

Question: Is $\mathcal{L}(G) = \mathcal{L}(G')$?

German: Äquivalenzproblem

Decidability: Equivalence Problem

Theorem

*The equivalence problem for regular languages is **decidable**.*

Proof.

In general for languages L and L' , we have

$$L = L' \text{ iff } (L \cap \bar{L}') \cup (\bar{L} \cap L') = \emptyset.$$

The regular languages are closed under intersection, union and complement, and we know algorithms for these operations.

We can therefore construct a grammar for $(L \cap \bar{L}') \cup (\bar{L} \cap L')$ and use the algorithm for the emptiness problem P_\emptyset . □

Summary

- ▶ The **pumping lemma** can be used to show that a language is **not regular**.
- ▶ The regular languages are **closed** under all usual operations (union, intersection, complement, concatenation, star).
- ▶ All usual decision problems (word problem, emptiness, finiteness, intersection, equivalence) are **decidable** for regular languages.