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Formalisms for Regular Languages

m DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

m Are there other concepts with the same expressiveness?

m Yes! ~~ regular expressions
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Concatenation of Languages and Kleene Star

Concatenation

m For two languages Ly (over X1) and L (over X3), the
concatenation of Ly and L; is the language
LiLy = {W1W2 S (Zl U 22)* ’ wi € Ll, Wy € LQ}.
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Concatenation of Languages and Kleene Star

Concatenation

m For two languages Ly (over X1) and L (over X3), the
concatenation of Ly and L; is the language
LiLy = {W1W2 S (Zl U 22)* ’ wi € Ll, Wy € LQ}.

Kleene star
m For language L define
m 0= {¢}
m =1

m L =[] for i € Ny
m The definition of Kleene star on L is L* = |-, L'.
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Regular Expressions: Definition

Definition (Regular Expressions)

Regular expressions over an alphabet ¥ are defined inductively:
m () is a regular expression
B ¢ is a regular expression
m If a € ¥, then a is a regular expression
If  and (8 are regular expressions, then so are:
m (af) (concatenation)
m (a|p) (alternative)
m (a*) (Kleene closure)

German: regulare Ausdriicke, Verkettung, Alternative, kleenesche Hiille
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Regular Expressions: Omitting Parentheses

omitted parentheses by convention:
m Kleene closure a* binds more strongly than concatenation af.
m Concatenation binds more strongly than alternative «/|g.

m Parentheses for nested concatenations/alternatives are omitted
(we can treat them as left-associative; it does not matter).

Example: ab*c|e|abab* abbreviates ((((a(b*))c)|e)|(((ab)a)(b*))).
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Regular Expressions: Examples

some regular expressions for ¥ = {0, 1}:
m 0*10*
= (0[1)*1(0|1)*
= ((0[1)(0]1))"
= 01]10
= 0(0|1)*0|1(0[1)*1]0]1



Regular Expressions Summary

0O0000000e00000

Regular Expressions: Language

Definition (Language Described by a Regular Expression)

The language described by a regular expression 7, written £(7),
is inductively defined as follows:

m If v =0, then L(v) =

m If v =¢, then L(v) = {e}.

m If v = awith a € &, then L(v) = {a}.

m If v = (af), where o and 3 are regular expressions,
(7) = L(a)L(B).

m If v = («|B), where a and f3 are regular expressions,

then L(v) = L(a) U L(B).
(a*) where « is a regular expression,

) =

L()".

Examples: blackboard

then L

mify=
then L(~
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Finite Languages Can Be Described By Regular Expressions

Every finite language can be described by a regular expression. I

Proof.

For every word w € L*, a regular expression describing

the language {w} can be built from regular expressions a € ¥
by using concatenations.

(Use e if w=¢.)

For every finite language L = {w1,wa,..., wp},

a regular expression describing L can be built from the regular
expressions for {w;} by using alternatives.

(Use D if L=10.) O]

Summary
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Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.
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Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof.

Let v be a regular expression.
We show the statement by induction over the structure
of regular expressions.

|

Fory =0,y =¢ and v = 3,
NFAs that accept £(+y) are obvious.
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Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For v = (a), let M, and Mg be NFAs that (by ind. hypothesis)
accept L£(a) and L(3). W.l.o.g., their states are disjoint.

Construct NFA M for L(~y) by “daisy-chaining” M, and Mag:

m states: union of states of M, and Mg
B start states: those of M,; if ¢ € L(«), also those of Mg
m end states: end states of Mg

m state transitions: all transitions of M, and of Mg;
additionally: for every transition to an end state of M,,,
an equally labeled transition to all start states of Mg
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Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For v = («|3), by the induction hypothesis let M, = (Qqu, X, b0y Sas Ea)
and Mg = (Q3, X, 93, Sg, Eg) be NFAs that accept L(«) and L().
W.lo.g., QuN Qs =0.

Then the “union automaton”

M = {(Qa U Qp,%,0,Uds,SaUSs, E, U Ep)

accepts the language L(7).

N

German: Vereinigungsautomat
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Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For v = (a*), by the induction hypothesis let M, = (Qn, X, 00, Sar, Ewr)
be an NFA that accepts £(c).

If € ¢ £(«), add an additional state to M, that is a start and end state
and not connected to other states. M, now recognizes L(«a) U {e}.

M is constructed from M, by adding the following new transitions:
whenever M,, has a transition from s to end state s’ with symbol a,
add transitions from s to every start state with symbol a.

Then L(M) = L(7). O
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DFAs Not More Powerful Than Regular Expressions

Every language accepted by a DFA can be described
by a regular expression.

Without proof.
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Regular Languages vs. Regular Expressions

Theorem (Kleene)

The set of languages that can be described by regular expressions
is exactly the set of regular languages.

This follows directly from the previous two theorems.
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Questions

N

~

Questions?
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Summary

m Regular expressions are another way to describe languages.

m All regular languages can be described by regular expressions,
and all regular expressions describe regular languages.

m Hence, they are equivalent to finite automata.
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