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Formalisms for Regular Languages

I DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

I Are there other concepts with the same expressiveness?

I Yes!  regular expressions
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Concatenation of Languages and Kleene Star

Concatenation

I For two languages L1 (over Σ1) and L2 (over Σ2), the
concatenation of L1 and L2 is the language
L1L2 = {w1w2 ∈ (Σ1 ∪ Σ2)∗ | w1 ∈ L1,w2 ∈ L2}.

Kleene star
I For language L define

I L0 = {ε}
I L1 = L
I Li+1 = LiL for i ∈ N>0

I The definition of Kleene star on L is L∗ =
⋃

i≥0 L
i .
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Regular Expressions: Definition

Definition (Regular Expressions)

Regular expressions over an alphabet Σ are defined inductively:

I ∅ is a regular expression

I ε is a regular expression

I If a ∈ Σ, then a is a regular expression

If α and β are regular expressions, then so are:

I (αβ) (concatenation)

I (α|β) (alternative)

I (α∗) (Kleene closure)

German: reguläre Ausdrücke, Verkettung, Alternative, kleenesche Hülle
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Regular Expressions: Omitting Parentheses

omitted parentheses by convention:

I Kleene closure α∗ binds more strongly than concatenation αβ.

I Concatenation binds more strongly than alternative α|β.

I Parentheses for nested concatenations/alternatives are omitted
(we can treat them as left-associative; it does not matter).

Example: ab∗c|ε|abab∗ abbreviates ((((a(b∗))c)|ε)|(((ab)a)(b∗))).
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Regular Expressions: Examples

some regular expressions for Σ = {0, 1}:

I 0∗10∗

I (0|1)∗1(0|1)∗

I ((0|1)(0|1))∗

I 01|10
I 0(0|1)∗0|1(0|1)∗1|0|1
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Regular Expressions: Language

Definition (Language Described by a Regular Expression)

The language described by a regular expression γ, written L(γ),
is inductively defined as follows:

I If γ = ∅, then L(γ) = ∅.

I If γ = ε, then L(γ) = {ε}.

I If γ = a with a ∈ Σ, then L(γ) = {a}.

I If γ = (αβ), where α and β are regular expressions,
then L(γ) = L(α)L(β).

I If γ = (α|β), where α and β are regular expressions,
then L(γ) = L(α) ∪ L(β).

I If γ = (α∗) where α is a regular expression,
then L(γ) = L(α)∗.

Examples: blackboard

Gabriele Röger (University of Basel) Theory of Computer Science March 25, 2020 11 / 20



C3. Regular Languages: Regular Expressions Regular Expressions

Finite Languages Can Be Described By Regular Expressions

Theorem
Every finite language can be described by a regular expression.

Proof.
For every word w ∈ Σ∗, a regular expression describing
the language {w} can be built from regular expressions a ∈ Σ
by using concatenations.
(Use ε if w = ε.)

For every finite language L = {w1,w2, . . . ,wn},
a regular expression describing L can be built from the regular
expressions for {wi} by using alternatives.
(Use ∅ if L = ∅.)
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Regular Expressions Not More Powerful Than NFAs

Theorem
For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof.
Let γ be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For γ = ∅, γ = ε and γ = a,
NFAs that accept L(γ) are obvious. . . .
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Regular Expressions Not More Powerful Than NFAs

Theorem
For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For γ = (αβ), let Mα and Mβ be NFAs that (by ind. hypothesis)
accept L(α) and L(β). W.l.o.g., their states are disjoint.

Construct NFA M for L(γ) by “daisy-chaining” Mα and Mβ :

I states: union of states of Mα and Mβ

I start states: those of Mα; if ε ∈ L(α), also those of Mβ

I end states: end states of Mβ

I state transitions: all transitions of Mα and of Mβ ;
additionally: for every transition to an end state of Mα,
an equally labeled transition to all start states of Mβ . . .
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Regular Expressions Not More Powerful Than NFAs

Theorem
For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For γ = (α|β), by the induction hypothesis let Mα = 〈Qα,Σ, δα,Sα,Eα〉
and Mβ = 〈Qβ ,Σ, δβ ,Sβ ,Eβ〉 be NFAs that accept L(α) and L(β).
W.l.o.g., Qα ∩ Qβ = ∅.

Then the “union automaton”

M = 〈Qα ∪ Qβ ,Σ, δα ∪ δβ ,Sα ∪ Sβ ,Eα ∪ Eβ〉

accepts the language L(γ). . . .

German: Vereinigungsautomat
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Regular Expressions Not More Powerful Than NFAs

Theorem
For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For γ = (α∗), by the induction hypothesis let Mα = 〈Qα,Σ, δα,Sα,Eα〉
be an NFA that accepts L(α).

If ε /∈ L(α), add an additional state to Mα that is a start and end state
and not connected to other states. Mα now recognizes L(α) ∪ {ε}.

M is constructed from Mα by adding the following new transitions:
whenever Mα has a transition from s to end state s ′ with symbol a,
add transitions from s to every start state with symbol a.

Then L(M) = L(γ).
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DFAs Not More Powerful Than Regular Expressions

Theorem
Every language accepted by a DFA can be described
by a regular expression.

Without proof.
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Regular Languages vs. Regular Expressions

Theorem (Kleene)

The set of languages that can be described by regular expressions
is exactly the set of regular languages.

This follows directly from the previous two theorems.
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Summary

I Regular expressions are another way to describe languages.

I All regular languages can be described by regular expressions,
and all regular expressions describe regular languages.

I Hence, they are equivalent to finite automata.
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