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Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (¥, V, P, S) with
© X finite alphabet of terminals
Q V finite set of variables (with VNE = ()
Q@ PC (VX (XZUXV))U{(S,e)} finite set of rules
Q@ ifS—>ece P, thereisnoX eV, ye¥XwithX —>ySeP
© S € V start variable.
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© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
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Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (¥, V, P, S) with
© X finite alphabet of terminals
Q V finite set of variables (with VNE = ()
Q@ PC (VX (XZUXV))U{(S.e)} finite set of rules
Q@ ifS—c€ P, thereisno X € V,y e ¥ with X — ySe€P
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?
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Start Variable in Right-Hand Side of Rules

Summar

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

For every grammar G = (¥, V,P,S) there is a grammar
G' = (X, V', P',S) with rules P’ C (V' UT)* x (V' \ {S}UL)*
such that L(G) = L(G").
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Start Variable in Right-Hand Side of Rules: Proof

Summary

Let G =(X,V,P,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set P’ from P as follows:

m for every rule r € P, add a rule r’ to P’, where r’ is the result
of replacing all occurences of S in r with S’

m foreveryrule S — w € P, add arule S — w’ to P/, where w/
is the result of replacing all occurences of S in w with S’

Then £(G) = L((Z,VU{S'}, P',S)). O

v
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Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G =(X,V,P,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set P’ from P as follows:

m for every rule r € P, add a rule r’ to P’, where r’ is the result
of replacing all occurences of S in r with S’

m forevery rule S — w € P, add arule S — w’ to P/, where w’
is the result of replacing all occurences of S in w with S’

Then £(G) = L((Z,VU{S'}, P',S)). O

v

Note that the rules in P’ are not fundamentally different from the
rules in P. In particular:

B fPCVx(SUZVU{e}) then P C V' x (ZUSV' U{e}).
mIfPCVx(VUI) then P C V' x (V/ UX)*.
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Start Variable in Right-Hand Side of Rules: Example
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Epsilon Rules

For every grammar G with rules P C V x (X UXV U {e})
there is a regular grammar G' with L(G) = L(G').

Proof.

Let G =(X,V,P,S) be a grammars.t. PC V x (X UXV U{e}).
Use the previous proof to construct grammar G’ = (X, V', P"|S)
st. PCV x (ZUX(V'\{S}Huie}).

Let V. ={A|A—c€ P}

Let P” be the rule set that is created from P’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B— xAwithAec V.,Be V' ,xe X weaddarule B— xtoP".

Then G” = (X, V', P",S) is regular and L(G) = L(G"). O

| A

.
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Epsilon Rules: Example
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 41, 9o,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo, 91, qo, qo,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 41, qo, 4o,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo, 91, Go, qo, g1,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 41, qo, qo, q1,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 41, qo, qo, 91, q>2.
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Finite Automata: Terminology and Notation
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Finite Automata: Terminology and Notation

}
(J—(=for =)o

0

m states Q = {qo, 91, ¢2}
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Finite Automata: Terminology and Notation

1 0
(o

0

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}
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m states Q = {qo, 91, ¢2} 9(qo,0) = q1
® input alphabet ¥ = {0,1} 9(qo,1) = qo
m transition function ¢ 0(g1,0) = g2
(q1,1) = qo
6(q2,0) = q2
6(q2,1) = qo
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m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m transition function §

(g0, 0) = q1
6(qo, 1) = qo
6(q1,0) = q2
6(q1,1) = qo
3(g2,0) = q2
0(g2,1) = qo

table form of §
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m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m transition function §

m start state qg

(g0, 0) = q1
6(qo, 1) = qo
6(q1,0) = q2
6(q1,1) = qo
3(g2,0) = q2
0(g2,1) = qo

table form of §
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m states Q = {qo, g1, G2} 6(q0,0) = q1
® input alphabet ¥ = {0,1} 9(qo,1) = qo
m transition function ¢ 0(g1,0) = g2
m start state qg 0(q1,1) = qo TP
m end states {ga} 0(g2,0) = g2
6(q2,1) = qo
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Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M =(Q,X,d,qo, E) where

m Q@ is the finite set of states

Y is the input alphabet (with Q N X = ()
0: Q x X — Q is the transition function
go € Q is the start state

| |
| |
| |
m E C Q@ is the set of end states

German: deterministischer e_ndlicher Autom_:_at, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,
Startzustand, Endzustinde
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DFA: Recogn ized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, %, 4, qo, E) recognizes the word w = a3 ... a,
if there is a sequence of states qp, ..., q), € Q with
Q 9, = 9o,
Q@ 4(q,_q,a;)) =g forall i e {1,...,n} and
Q q,cE. |

German: DFA erkennt das Wort
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DFA: Recogn ized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, %, 4, qo, E) recognizes the word w = a3 ... a,
if there is a sequence of states qp, ..., q), € Q with

Q 9, = 9o,
Q@ 4(q,_q,a;)) =g forall i e {1,...,n} and
Q q,cE.

German: DFA erkennt das Wort

. v L recognizes:

1 (1)8010100

- 01000

does not recognize:
€

1001010

010001




DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.

The DFA accepts the language
(=)o {w € {0,1}* | w ends with 00}.
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). I
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). |

Proof.

Let M = (Q, %, 9, qo, E) be a DFA.
We define a regular grammar G with £(G) = L(M).

Define G = (X, Q, P, qo) where P contains
m arule g — aq’ for every 6(q,a) = ¢/, and

m arule g — ¢ for every g € E.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). |

Proof (continued).

For every w = a1a>...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, .. ., q), with

9h = qo, g, € E and 6(q'_;,a;) = ¢ forall i € {1,...,n}
iff there is a sequence of variables qg, qi, . . ., g}, with

qp is start variable and we have g = ai1q] = a1a2q5 =
ce = 2132...3pQ, = aiaz...an.

iff w € L(G) O
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). |

Proof (continued).

For every w = a1a>...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, .. ., q), with

9h = qo, g, € E and 6(q'_;,a;) = ¢ forall i € {1,...,n}
iff there is a sequence of variables qg, qi, . . ., g}, with

qp is start variable and we have g = ai1q] = a1a2q5 =
ce = 2132...3pQ, = aiaz...an.

iff w € L(G) O

Example: blackboard
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Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs exactly the
regular languages?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Question

Is the inverse true as well:
A for every regular language, is there a
DFA that accepts it? That is, are the
! ‘ languages accepted by DFAs exactly the
= regular languages?

Yes!
! { We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

m multiple start states possible
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

m multiple start states possible

m transition function § can lead to
zero or more successor states for the same a € X
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

m multiple start states possible

m transition function § can lead to
zero or more successor states for the same a € X

m automaton recognizes a word if there is
at least one accepting sequence of states
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Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,%,9,S, E) where

m Q is the finite set of states

m Y is the input alphabet (with @ NX = 0)

B J: QXX — P(Q) is the transition function
(mapping to the power set of Q)

m S C Q is the set of start states
m E C Q is the set of end states

German: nichtdeterministischer endlicher Automat
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Nondeterministic Finite Automaton: Definition

Summary

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,%,9,S, E) where

m Q is the finite set of states

m Y is the input alphabet (with @ NX = 0)

B J: QXX — P(Q) is the transition function
(mapping to the power set of Q)

m S C Q is the set of start states
m E C Q is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.
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NFA: Recognized Word

Definition (Words Recognized by an NFA)
NFA M = (Q,%,6,S, E) recognizes the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with

Q@ S,

Q@ ¢ €i(q._q,a) forallie{l,...,n} and

Q g, €E.
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NFA: Recognized Words

Definition (Words Recognized by an NFA)
NFA M = (Q,%,6,S, E) recognizes the word w = a3 ... a,

if there is a sequence of states g, ..., q, € Q with
Q@ g €S,
Q g/ €0(q._q,a;) forall i € {1,...,n} and
Q@ g, €E.

recognizes: does not recognize:

v
0 €
o /N o
é N\ @ 10010100 1001010
0 01000 010001
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NFA: Accepted Language

Summar

Definition (Language Accepted by an NFA)

Let M = (Q,%,9,S, E) be a nondeterministic finite automaton.

The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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NFA: Accepted Language

Summary

Definition (Language Accepted by an NFA)

Let M = (Q,%,6,S, E) be a nondeterministic finite automaton.

The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = (Q,%,6,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.

v The NFA accepts the language
C% 0 @ 0 @ {we{0,1}* |w=0or

w ends with 00}.
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof
For every NFA M = (Q, X%, 6, S, E) we can construct
a DFA M' =(Q', %, ¢, qp, E') with L(M) = L(M').
Here M’ is defined as follows:

B Q :=7P(Q) (the power set of Q)

mqy=S

mE={QCQ|QNE#D}

m Forall Qe Q" §(Q,a):= U d(q, a)

qeQ

N,
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a>...a, € &*:

w e L(M)
iff there is a sequence of states qg, g1, ..., g, with
Go €S, qn € E and g; € 6(qgj_1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qgp, 91, ..., 9, with
Qo =qy, Qn € E and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M') O

y
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a>...a, € &*:
w e L(M)
iff there is a sequence of states qg, g1, ..., g, with
Go €S, qn € E and g; € 6(qgj_1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qgp, 91, ..., 9, with
Qo =qy, Qn € E and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M') 0

Example: blackboard
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NFAs are More Co

mpact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.
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NFAs are More Co

mpact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1
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NFAs are More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

0 /N 0t /N 01 0,1 O

—>( 9o a1 q2 9k
& N N

There is no DFA with less than 2% states that accepts Ly
(without proof).
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NFAs are More Co

mpact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

0 /N 0t /N 01 0,1 O

—>( 9o a1 q2 9k
6 N N

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.



NFAs
0000000000800

Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).
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Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

| A\

Proof.
Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q, X%, 6,5, E) with

Q=VU{X}, X¢gV
s'={s}
E:{{S,X} ifS—seecP
(X} #fS—oecdP
Bed(Aa)ifA—aBeP
Xed(Aa)ifA—-acP

N

Grammars As NFAs Summary
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Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

\

Proof (continued).

For every w = a1ay...a, € ¥* with n > 1:

w e L(G)
iff there is a sequence on variables A;, Ay, ..., A,_1 with
S = 1Al = a1a0A = - = a1a2...ap-1An—1 = 3132 ... a,.
iff there is a sequence of variables A1, Ay, ..., A,_1 with
A € 5(5,31),/\2 € 5(A1, 32), o, XE 6(A,,_1,a,,).
iff w € L(M).

Case w = ¢ is also covered because S € E iff S — ¢ € P. ]
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Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

L regular <> L is accepted by a DFA.
L regular <> L is accepted by an NFA.
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Summary

m We now know three formalisms that all

describe exactly the regular languages:

regular grammars, DFAs and NFAs
m We will get to know a fourth formalism in the next chapter.
m DFAs are automata where every state transition

is uniquely determined.

m NFAs recognize a word if there is at least one
accepting sequence of states.
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