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Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P,S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?



Regular Grammars DFAs NFAs Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P,S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.

How restrictive is this?



Regular Grammars DFAs NFAs Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P,S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV )) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?



Regular Grammars DFAs NFAs Summary

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = 〈Σ,V ,P,S〉 there is a grammar
G ′ = 〈Σ,V ′,P ′,S〉 with rules P ′ ⊆ (V ′ ∪ Σ)+ × (V ′ \ {S} ∪ Σ)∗

such that L(G ) = L(G ′).
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Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G = 〈Σ,V ,P,S〉 be a grammar and S ′ 6∈ V be a new variable.
Construct rule set P ′ from P as follows:

for every rule r ∈ P, add a rule r ′ to P ′, where r ′ is the result
of replacing all occurences of S in r with S ′.

for every rule S → w ∈ P, add a rule S → w ′ to P ′, where w ′

is the result of replacing all occurences of S in w with S ′.

Then L(G ) = L(〈Σ,V ∪ {S ′},P ′,S〉).

Note that the rules in P ′ are not fundamentally different from the
rules in P. In particular:

If P ⊆ V × (Σ ∪ΣV ∪ {ε}) then P ′ ⊆ V ′ × (Σ ∪ΣV ′ ∪ {ε}).

If P ⊆ V × (V ∪ Σ)∗ then P ′ ⊆ V ′ × (V ′ ∪ Σ)∗.
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Start Variable in Right-Hand Side of Rules: Example
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Epsilon Rules

Theorem

For every grammar G with rules P ⊆ V × (Σ ∪ ΣV ∪ {ε})
there is a regular grammar G ′ with L(G ) = L(G ′).

Proof.

Let G = 〈Σ,V ,P, S〉 be a grammar s.t. P ⊆ V × (Σ ∪ ΣV ∪ {ε}).
Use the previous proof to construct grammar G ′ = 〈Σ,V ′,P ′,S〉
s.t. P ′ ⊆ V ′ × (Σ ∪ Σ(V ′ \ {S}) ∪ {ε}).
Let Vε = {A | A→ ε ∈ P ′}.
Let P ′′ be the rule set that is created from P ′ by removing all rules
of the form A→ ε (A 6= S). Additionally, for every rule of the form
B → xA with A ∈ Vε,B ∈ V ′, x ∈ Σ we add a rule B → x to P ′′.

Then G ′′ = 〈Σ,V ′,P ′′,S〉 is regular and L(G ) = L(G ′′).
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Epsilon Rules: Example
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Finite Automata: Example

q0q1 q2
0

1

0
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0

1

When reading the input 01100 the automaton visits the states
q0,

q1, q0, q0, q1, q2.
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Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ
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Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M = 〈Q,Σ, δ, q0,E 〉 where

Q is the finite set of states

Σ is the input alphabet (with Q ∩ Σ = ∅)
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

E ⊆ Q is the set of end states

German: deterministischer endlicher Automat, Zustände,
German: Eingabealphabet, Überführungs-/Übergangsfunktion,

German: Startzustand, Endzustände
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DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = 〈Q,Σ, δ, q0,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

German: DFA erkennt das Wort

Example

q0q1 q2
0

1

0

1

0

1
recognizes:
00

10010100

01000

does not recognize:
ε
1001010

010001
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DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0q1 q2
0

1

0

1

0

1

The DFA accepts the language
{w ∈ {0, 1}∗ | w ends with 00}.
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Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Example: blackboard
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Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let M = 〈Q,Σ, δ, q0,E 〉 be a DFA.
We define a regular grammar G with L(G ) = L(M).

Define G = 〈Σ,Q,P, q0〉 where P contains

a rule q → aq′ for every δ(q, a) = q′, and

a rule q → ε for every q ∈ E .

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.) . . .

Example: blackboard
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Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q′n ∈ E and δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n}
iff there is a sequence of variables q′0, q

′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G )

Example: blackboard
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Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the

languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are

nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Nondeterministic Finite Automata: Example

q0 q1 q2
0

0,1

0

differences to DFAs:

multiple start states possible

transition function δ can lead to
zero or more successor states for the same a ∈ Σ

automaton recognizes a word if there is
at least one accepting sequence of states
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Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = 〈Q,Σ, δ,S ,E 〉 where

Q is the finite set of states

Σ is the input alphabet (with Q ∩ Σ = ∅)
δ : Q × Σ→ P(Q) is the transition function
(mapping to the power set of Q)

S ⊆ Q is the set of start states

E ⊆ Q is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.
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NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = 〈Q,Σ, δ,S ,E 〉 be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example
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0
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0

The NFA accepts the language
{w ∈ {0, 1}∗ | w = 0 or
{w ∈ {0, 1}∗ | w ends with 00}.
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof.

For every NFA M = 〈Q,Σ, δ,S ,E 〉 we can construct
a DFA M ′ = 〈Q ′,Σ, δ′, q′0,E ′〉 with L(M) = L(M ′).
Here M ′ is defined as follows:

Q ′ := P(Q) (the power set of Q)

q′0 := S

E ′ := {Q ⊆ Q | Q ∩ E 6= ∅}
For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

δ(q, a)

. . .

Example: blackboard
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Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states q0, q1, . . . , qn with
iff q0 ∈ S , qn ∈ E and qi ∈ δ(qi−1, ai ) for all i ∈ {1, . . . , n}
iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ E ′ and δ′(Qi−1, ai ) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)

Example: blackboard



Regular Grammars DFAs NFAs Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states q0, q1, . . . , qn with
iff q0 ∈ S , qn ∈ E and qi ∈ δ(qi−1, ai ) for all i ∈ {1, . . . , n}
iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ E ′ and δ′(Qi−1, ai ) = Qi for all i ∈ {1, . . . , n}
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NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.
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Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof.

Let G = 〈Σ,V ,P,S〉 be a regular grammar.
Define NFA M = 〈Q,Σ, δ,S ′,E 〉 with

Q = V ∪ {X}, X 6∈ V

S ′ = {S}

E =

{
{S ,X} if S → ε ∈ P

{X} if S → ε 6∈ P

B ∈ δ(A, a) if A→ aB ∈ P

X ∈ δ(A, a) if A→ a ∈ P

. . .
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Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G )

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ E iff S → ε ∈ P.
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Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is accepted by a DFA.
L regular ⇐⇒ L is accepted by an NFA.
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Summary

We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

We will get to know a fourth formalism in the next chapter.

DFAs are automata where every state transition
is uniquely determined.

NFAs recognize a word if there is at least one
accepting sequence of states.
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