
Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Röger

University of Basel

March 23, 2020

Regular Grammars DFAs NFAs Summary

Regular Grammars

Regular Grammars DFAs NFAs Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Regular
Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

Context-free
Languages

Context-sensitive &
Type-0 Languages

Regular Grammars DFAs NFAs Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P,S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV)) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Regular Grammars DFAs NFAs Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P,S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV)) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.

How restrictive is this?

Regular Grammars DFAs NFAs Summary

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P,S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV)) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Regular Grammars DFAs NFAs Summary

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = 〈Σ,V ,P,S〉 there is a grammar
G ′ = 〈Σ,V ′,P ′,S〉 with rules P ′ ⊆ (V ′ ∪ Σ)+ × (V ′ \ {S} ∪ Σ)∗

such that L(G) = L(G ′).

Regular Grammars DFAs NFAs Summary

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G = 〈Σ,V ,P,S〉 be a grammar and S ′ 6∈ V be a new variable.
Construct rule set P ′ from P as follows:

for every rule r ∈ P, add a rule r ′ to P ′, where r ′ is the result
of replacing all occurences of S in r with S ′.

for every rule S → w ∈ P, add a rule S → w ′ to P ′, where w ′

is the result of replacing all occurences of S in w with S ′.

Then L(G) = L(〈Σ,V ∪ {S ′},P ′,S〉).

Note that the rules in P ′ are not fundamentally different from the
rules in P. In particular:

If P ⊆ V × (Σ ∪ΣV ∪ {ε}) then P ′ ⊆ V ′ × (Σ ∪ΣV ′ ∪ {ε}).

If P ⊆ V × (V ∪ Σ)∗ then P ′ ⊆ V ′ × (V ′ ∪ Σ)∗.

Regular Grammars DFAs NFAs Summary

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G = 〈Σ,V ,P,S〉 be a grammar and S ′ 6∈ V be a new variable.
Construct rule set P ′ from P as follows:

for every rule r ∈ P, add a rule r ′ to P ′, where r ′ is the result
of replacing all occurences of S in r with S ′.

for every rule S → w ∈ P, add a rule S → w ′ to P ′, where w ′

is the result of replacing all occurences of S in w with S ′.

Then L(G) = L(〈Σ,V ∪ {S ′},P ′,S〉).

Note that the rules in P ′ are not fundamentally different from the
rules in P. In particular:

If P ⊆ V × (Σ ∪ΣV ∪ {ε}) then P ′ ⊆ V ′ × (Σ ∪ΣV ′ ∪ {ε}).

If P ⊆ V × (V ∪ Σ)∗ then P ′ ⊆ V ′ × (V ′ ∪ Σ)∗.

Regular Grammars DFAs NFAs Summary

Start Variable in Right-Hand Side of Rules: Example

Regular Grammars DFAs NFAs Summary

Epsilon Rules

Theorem

For every grammar G with rules P ⊆ V × (Σ ∪ ΣV ∪ {ε})
there is a regular grammar G ′ with L(G) = L(G ′).

Proof.

Let G = 〈Σ,V ,P, S〉 be a grammar s.t. P ⊆ V × (Σ ∪ ΣV ∪ {ε}).
Use the previous proof to construct grammar G ′ = 〈Σ,V ′,P ′,S〉
s.t. P ′ ⊆ V ′ × (Σ ∪ Σ(V ′ \ {S}) ∪ {ε}).
Let Vε = {A | A→ ε ∈ P ′}.
Let P ′′ be the rule set that is created from P ′ by removing all rules
of the form A→ ε (A 6= S). Additionally, for every rule of the form
B → xA with A ∈ Vε,B ∈ V ′, x ∈ Σ we add a rule B → x to P ′′.

Then G ′′ = 〈Σ,V ′,P ′′,S〉 is regular and L(G) = L(G ′′).

Regular Grammars DFAs NFAs Summary

Epsilon Rules: Example

Regular Grammars DFAs NFAs Summary

Questions

Questions?

Regular Grammars DFAs NFAs Summary

DFAs

Regular Grammars DFAs NFAs Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Regular
Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

Context-free
Languages

Context-sensitive &
Type-0 Languages

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0,

q1, q0, q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0,

q1, q0, q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0,

q1, q0, q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1,

q0, q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1,

q0, q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0,

q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0,

q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0,

q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0,

q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0, q1,

q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0, q1,

q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0, q1, q2.

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

states Q = {q0, q1, q2}
input alphabet Σ = {0, 1}
transition function δ

start state q0

end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Regular Grammars DFAs NFAs Summary

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M = 〈Q,Σ, δ, q0,E 〉 where

Q is the finite set of states

Σ is the input alphabet (with Q ∩ Σ = ∅)
δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

E ⊆ Q is the set of end states

German: deterministischer endlicher Automat, Zustände,
German: Eingabealphabet, Überführungs-/Übergangsfunktion,

German: Startzustand, Endzustände

Regular Grammars DFAs NFAs Summary

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = 〈Q,Σ, δ, q0,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

German: DFA erkennt das Wort

Example

q0q1 q2
0

1

0

1

0

1
recognizes:
00

10010100

01000

does not recognize:
ε
1001010

010001

Regular Grammars DFAs NFAs Summary

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = 〈Q,Σ, δ, q0,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

German: DFA erkennt das Wort

Example

q0q1 q2
0

1

0

1

0

1
recognizes:
00

10010100

01000

does not recognize:
ε
1001010

010001

Regular Grammars DFAs NFAs Summary

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0q1 q2
0

1

0

1

0

1

The DFA accepts the language
{w ∈ {0, 1}∗ | w ends with 00}.

Regular Grammars DFAs NFAs Summary

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0q1 q2
0

1

0

1

0

1

The DFA accepts the language
{w ∈ {0, 1}∗ | w ends with 00}.

Regular Grammars DFAs NFAs Summary

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0q1 q2
0

1

0

1

0

1
The DFA accepts the language
{w ∈ {0, 1}∗ | w ends with 00}.

Regular Grammars DFAs NFAs Summary

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Example: blackboard

Regular Grammars DFAs NFAs Summary

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let M = 〈Q,Σ, δ, q0,E 〉 be a DFA.
We define a regular grammar G with L(G) = L(M).

Define G = 〈Σ,Q,P, q0〉 where P contains

a rule q → aq′ for every δ(q, a) = q′, and

a rule q → ε for every q ∈ E .

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.) . . .

Example: blackboard

Regular Grammars DFAs NFAs Summary

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q′n ∈ E and δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n}
iff there is a sequence of variables q′0, q

′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G)

Example: blackboard

Regular Grammars DFAs NFAs Summary

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q′n ∈ E and δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n}
iff there is a sequence of variables q′0, q

′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G)

Example: blackboard

Regular Grammars DFAs NFAs Summary

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the

languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Regular Grammars DFAs NFAs Summary

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the

languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Regular Grammars DFAs NFAs Summary

Questions

Questions?

Regular Grammars DFAs NFAs Summary

NFAs

Regular Grammars DFAs NFAs Summary

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Regular
Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

Context-free
Languages

Context-sensitive &
Type-0 Languages

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are

nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automata: Example

q0 q1 q2
0

0,1

0

differences to DFAs:

multiple start states possible

transition function δ can lead to
zero or more successor states for the same a ∈ Σ

automaton recognizes a word if there is
at least one accepting sequence of states

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automata: Example

q0 q1 q2
0

0,1

0

differences to DFAs:

multiple start states possible

transition function δ can lead to
zero or more successor states for the same a ∈ Σ

automaton recognizes a word if there is
at least one accepting sequence of states

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automata: Example

q0 q1 q2
0

0,1

0

differences to DFAs:

multiple start states possible

transition function δ can lead to
zero or more successor states for the same a ∈ Σ

automaton recognizes a word if there is
at least one accepting sequence of states

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automata: Example

q0 q1 q2
0

0,1

0

differences to DFAs:

multiple start states possible

transition function δ can lead to
zero or more successor states for the same a ∈ Σ

automaton recognizes a word if there is
at least one accepting sequence of states

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = 〈Q,Σ, δ,S ,E 〉 where

Q is the finite set of states

Σ is the input alphabet (with Q ∩ Σ = ∅)
δ : Q × Σ→ P(Q) is the transition function
(mapping to the power set of Q)

S ⊆ Q is the set of start states

E ⊆ Q is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Regular Grammars DFAs NFAs Summary

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = 〈Q,Σ, δ,S ,E 〉 where

Q is the finite set of states

Σ is the input alphabet (with Q ∩ Σ = ∅)
δ : Q × Σ→ P(Q) is the transition function
(mapping to the power set of Q)

S ⊆ Q is the set of start states

E ⊆ Q is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Regular Grammars DFAs NFAs Summary

NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA M = 〈Q,Σ, δ,S ,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 ∈ S ,

2 q′i ∈ δ(q′i−1, ai) for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

Example

q0 q1 q2
0

0,1

0

recognizes:
0

10010100

01000

does not recognize:
ε
1001010

010001

Regular Grammars DFAs NFAs Summary

NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA M = 〈Q,Σ, δ,S ,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 ∈ S ,

2 q′i ∈ δ(q′i−1, ai) for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

Example

q0 q1 q2
0

0,1

0

recognizes:
0

10010100

01000

does not recognize:
ε
1001010

010001

Regular Grammars DFAs NFAs Summary

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = 〈Q,Σ, δ,S ,E 〉 be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0 q1 q2
0

0, 1

0

The NFA accepts the language
{w ∈ {0, 1}∗ | w = 0 or
{w ∈ {0, 1}∗ | w ends with 00}.

Regular Grammars DFAs NFAs Summary

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = 〈Q,Σ, δ,S ,E 〉 be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0 q1 q2
0

0, 1

0

The NFA accepts the language
{w ∈ {0, 1}∗ | w = 0 or
{w ∈ {0, 1}∗ | w ends with 00}.

Regular Grammars DFAs NFAs Summary

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = 〈Q,Σ, δ,S ,E 〉 be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0 q1 q2
0

0, 1

0

The NFA accepts the language
{w ∈ {0, 1}∗ | w = 0 or
{w ∈ {0, 1}∗ | w ends with 00}.

Regular Grammars DFAs NFAs Summary

Questions

Questions?

Regular Grammars DFAs NFAs Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Example: blackboard

Regular Grammars DFAs NFAs Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof.

For every NFA M = 〈Q,Σ, δ,S ,E 〉 we can construct
a DFA M ′ = 〈Q ′,Σ, δ′, q′0,E ′〉 with L(M) = L(M ′).
Here M ′ is defined as follows:

Q ′ := P(Q) (the power set of Q)

q′0 := S

E ′ := {Q ⊆ Q | Q ∩ E 6= ∅}
For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

δ(q, a)

. . .

Example: blackboard

Regular Grammars DFAs NFAs Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states q0, q1, . . . , qn with
iff q0 ∈ S , qn ∈ E and qi ∈ δ(qi−1, ai) for all i ∈ {1, . . . , n}
iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ E ′ and δ′(Qi−1, ai) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)

Example: blackboard

Regular Grammars DFAs NFAs Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states q0, q1, . . . , qn with
iff q0 ∈ S , qn ∈ E and qi ∈ δ(qi−1, ai) for all i ∈ {1, . . . , n}
iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ E ′ and δ′(Qi−1, ai) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)

Example: blackboard

Regular Grammars DFAs NFAs Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars DFAs NFAs Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars DFAs NFAs Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars DFAs NFAs Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars DFAs NFAs Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Regular Grammars DFAs NFAs Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.

Let G = 〈Σ,V ,P,S〉 be a regular grammar.
Define NFA M = 〈Q,Σ, δ,S ′,E 〉 with

Q = V ∪ {X}, X 6∈ V

S ′ = {S}

E =

{
{S ,X} if S → ε ∈ P

{X} if S → ε 6∈ P

B ∈ δ(A, a) if A→ aB ∈ P

X ∈ δ(A, a) if A→ a ∈ P

. . .

Regular Grammars DFAs NFAs Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G)

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ E iff S → ε ∈ P.

Regular Grammars DFAs NFAs Summary

Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is accepted by a DFA.
L regular ⇐⇒ L is accepted by an NFA.

Regular Grammars DFAs NFAs Summary

Questions

Questions?

Regular Grammars DFAs NFAs Summary

Summary

Regular Grammars DFAs NFAs Summary

Summary

We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

We will get to know a fourth formalism in the next chapter.

DFAs are automata where every state transition
is uniquely determined.

NFAs recognize a word if there is at least one
accepting sequence of states.

	Regular Grammars
	

	DFAs
	

	NFAs
	

	Summary
	

