

C2. Regular Languages: Finite Automata Regular Grammars

Theory of Computer Science March 23, 2020 - C2. Regular Languages: Finite Automata C2.1 Regular Grammars C2.2 DFAs C2.3 NFAs C2.3 NFAs C2.4 Summary Cabriele Róger (University of Base) Theory of Computer Science March 23, 2020 - C2. Regular Languages: Finite Automata

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar and $S' \notin V$ be a new variable. Construct rule set P' from P as follows:

- ▶ for every rule $r \in P$, add a rule r' to P', where r' is the result of replacing all occurences of S in r with S'.
- ▶ for every rule $S \rightarrow w \in P$, add a rule $S \rightarrow w'$ to P', where w'is the result of replacing all occurences of S in w with S'.
- Then $\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V \cup \{S'\}, P', S \rangle).$

Note that the rules in P' are not fundamentally different from the rules in *P*. In particular:

- ▶ If $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ then $P' \subseteq V' \times (\Sigma \cup \Sigma V' \cup \{\varepsilon\})$.
- If $P \subseteq V \times (V \cup \Sigma)^*$ then $P' \subseteq V' \times (V' \cup \Sigma)^*$.

Theory of Computer Science

Start Variable in Right-Hand Side of Rules: Example

6 / 35

C2. Regular Languages: Finite Automata

Regular Grammars

9 / 35

DFAs

Epsilon Rules

Theorem

For every grammar *G* with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar s.t. $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$. Use the previous proof to construct grammar $G' = \langle \Sigma, V', P', S \rangle$ s.t. $P' \subseteq V' \times (\Sigma \cup \Sigma(V' \setminus \{S\}) \cup \{\varepsilon\}).$ Let $V_{\varepsilon} = \{A \mid A \to \varepsilon \in P'\}.$

Let P'' be the rule set that is created from P' by removing all rules of the form $A \rightarrow \varepsilon$ ($A \neq S$). Additionally, for every rule of the form $B \to xA$ with $A \in V_{\varepsilon}, B \in V', x \in \Sigma$ we add a rule $B \to x$ to P''. Then $G'' = \langle \Sigma, V', P'', S \rangle$ is regular and $\mathcal{L}(G) = \mathcal{L}(G'')$.

Theory of Computer Science

Gabriele Röger (University of Basel)

March 23, 2020

C2. Regular Languages: Finite Automata C_{2.2} DFAs Gabriele Röger (University of Basel) Theory of Computer Science March 23, 2020 11 / 35

C2. Regular Languages: Finite Automata		Regular	Grammars
Epsilon Rules: Exam	nple		
Gabriele Röger (University of Basel)	Theory of Computer Science	March 23, 2020	10 / 35

Definition (Words Recognized by a DFA) DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ recognizes the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

• $q'_0 = q_0$, • $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, ..., n\}$ and • $q'_n \in E$.

German: DFA erkennt das Wort

DFA: Accepted Language

Definition (Language Accepted by a DFA) Let M be a deterministic finite automaton. The language accepted by M is defined as $\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is recognized by } M\}.$

Gabriele Röger (University of Basel)

Theory of Computer Science

March 23, 2020

17 / 35

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA. We define a regular grammar G with $\mathcal{L}(G) = \mathcal{L}(M)$. Define $G = \langle \Sigma, Q, P, q_0 \rangle$ where P contains • a rule $q \to aq'$ for every $\delta(q, a) = q'$, and • a rule $q \to \varepsilon$ for every $q \in E$. (We can eliminate forbidden epsilon rules as described at the start of the chapter.) ...

Gabriele Röger (University of Basel)

Theory of Computer Science

March 23, 2020

18 / 35

DFAs

DFAs

C2. Regular Languages: Finite Automata			NFAs
C2.3 NFAs			
Gabriele Röger (University of Basel)	Theory of Computer Science	March 23, 2020	21 / 35

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata) A nondeterministic finite automaton (NFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, S, E \rangle$ where

- \blacktriangleright *Q* is the finite set of states
- Σ is the input alphabet (with $Q \cap \Sigma = \emptyset$)
- δ : Q × Σ → P(Q) is the transition function (mapping to the power set of Q)
- $S \subseteq Q$ is the set of start states
- $E \subseteq Q$ is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Gabriele Röger (University of Basel)

March 23, 2020

NFA

25 / 35

NFA

C2. Regular Languages: Finite Automata

Definition (Language Accepted by an NFA) Let $M = \langle Q, \Sigma, \delta, S, E \rangle$ be a nondeterministic finite automaton. The language accepted by M is defined as $\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is recognized by } M\}.$

Theory of Computer Science

NFA: Recognized Words

Definition (Words Recognized by an NFA) NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ recognizes the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with a $q'_0 \in S$, a $q'_i \in \delta(q'_{i-1}, a_i)$ for all $i \in \{1, \dots, n\}$ and a $q'_n \in E$. Example

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$:

$w \in \mathcal{L}(M)$

```
iff there is a sequence of states q_0, q_1, \ldots, q_n with

q_0 \in S, q_n \in E and q_i \in \delta(q_{i-1}, a_i) for all i \in \{1, \ldots, n\}

iff there is a sequence of subsets \mathcal{Q}_0, \mathcal{Q}_1, \ldots, \mathcal{Q}_n with

\mathcal{Q}_0 = q'_0, \ \mathcal{Q}_n \in E' and \delta'(\mathcal{Q}_{i-1}, a_i) = \mathcal{Q}_i for all i \in \{1, \ldots, n\}

iff w \in \mathcal{L}(M')
```

Example: blackboard

Gabriele Röger (University of Basel)

March 23, 2020

29 / 35

NFAs

NFA

C2. Regular Languages: Finite Automata

Regular Grammars are No More Powerful than NFAs

Theory of Computer Science

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a regular grammar. Define NFA $M = \langle Q, \Sigma, \delta, S', E \rangle$ with

$$Q = V \cup \{X\}, \quad X \notin V$$
$$S' = \{S\}$$
$$E = \begin{cases} \{S, X\} & \text{if } S \to \varepsilon \in P\\ \{X\} & \text{if } S \to \varepsilon \notin P \end{cases}$$
$$B \in \delta(A, a) \text{ if } A \to aB \in P$$
$$X \in \delta(A, a) \text{ if } A \to a \in P$$

Theory of Computer Science

NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language $L_k = \{w \in \{0, 1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$ The language L_k can be accepted by an NFA with k + 1 states: q_0 , q_1 , q_2 , q_2 , q_1 , q_2 , q_2 , q_3 , q_4

NFAs can often represent languages more compactly than DFAs.

Theory of Computer Science

Gabriele Röger (University of Basel)

March 23, 2020 30 / 35

NEAc

C2. Regular Languages: Finite Automata

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$ with $n \ge 1$:

$w \in \mathcal{L}(G)$

iff there is a sequence on variables $A_1, A_2, \ldots, A_{n-1}$ with

$$S \Rightarrow a_1A_1 \Rightarrow a_1a_2A_2 \Rightarrow \cdots \Rightarrow a_1a_2 \dots a_{n-1}A_{n-1} \Rightarrow a_1a_2 \dots a_n$$

Theory of Computer Science

iff there is a sequence of variables
$$A_1, A_2, \ldots, A_{n-1}$$
 with

 $A_1 \in \delta(S, a_1), A_2 \in \delta(A_1, a_2), \ldots, X \in \delta(A_{n-1}, a_n).$

iff $w \in \mathcal{L}(M)$.

Case $w = \varepsilon$ is also covered because $S \in E$ iff $S \to \varepsilon \in P$.

32 / 35

- is uniquely determined.
- NFAs recognize a word if there is at least one accepting sequence of states.

C2. Regular Languages: Finite Automata			Summar
COAC			
CZ.4 SUMM	ary		
	-		
Cabriele Pärer (University of Paral)	Theory of Computer Science	March 22, 2020	24 /
Gabriele Roger (University of Basel)	Theory of Computer Science	IVIAICII 23, 2020	54 / .

March 23, 2020 35 / 35