Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Roger

University of Basel

March 23, 2020

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 1/35

Theory of Computer Science
March 23, 2020 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars

C2.2 DFAs
C2.3 NFAs

C2.4 Summary

Gabriele Réger (University of Basel)

Theory of Computer Science

March 23, 2020

2/35

C2. Regular Languages: Finite Automata Regular Grammars

C2.1 Regular Grammars

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 3 /35

C2. Regular Languages: Finite Automata

Overview

Languages
& Grammars

Context-free
Languages

Context-sensitive &
Type-0 Languages

Gabriele Réger (University of Basel)

Theory of Computer Science

Regular Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

March 23, 2020

4/ 35

C2. Regular Languages: Finite Automata

Repetition: Regular Grammars

Definition (Regular Grammars)
A regular grammar is a 4-tuple (X, V, P, S) with
@ X finite alphabet of terminals
@ V finite set of variables (with V NX = ()
Q@ PC(VXx(ZUXV))U{(S,e)} finite set of rules
Q@ ifS—cecP,thereisno X e V,yec¥XwithX —->ySecP
@ S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Gabriele Roger (University of Basel) Theory of Computer Science

March 23, 2020 5/

Regular Grammars

35

C2. Regular Languages: Finite Automata

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = (¥, V,P,S) there is a grammar

G =(X,V' P S) with rules PP C (V'UZ)" x (V'\ {S}UX)*
such that L(G) = L(G).

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

6/

Regular Grammars

35

C2. Regular Languages: Finite Automata

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let G = (X, V,P,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set P’ from P as follows:

» for every rule r € P, add a rule r’ to P’, where r’ is the result
of replacing all occurences of S in r with S’

» foreveryrule S— w € P, add arule S — w’ to P/, where w’
is the result of replacing all occurences of S in w with S'.
Then £(G) = L((X, VU{S'}, P, S)). O
Note that the rules in P’ are not fundamentally different from the

rules in P. In particular:
> IfPCV x(ZUZVU{e})then PP C V' x (ZUZV' U{e}).
> If PCV x(VUX)* then PP C V' x (V UX)*.

Gabriele Roger (University of Basel) Theory of Computer Science

March 23, 2020 7/

Regular Grammars

35

C2. Regular Languages: Finite Automata

Start Variable in Right-Hand Side of Rules: Example

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

8 /

Regular Grammars

35

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem
For every grammar G with rules P C V x (ZUXV U {e})
there is a regular grammar G' with L(G) = L(G").

Proof.

Let G = (X, V,P,S) beagrammarst. PC V x (XUXV U{e}).
Use the previous proof to construct grammar G’ = (¥, V', P’ S)
st. PCV x (ZUuX(V'\{S}Hu{e}).

Let V. ={A|A—cec P}

Let P” be the rule set that is created from P’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B — xAwith Ae V., Be V' ,x€ X weadd arule B— xto P".

Then G” = (X, V', P",S) is regular and L(G) = L(G"). O

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 9 /35

C2. Regular Languages: Finite Automata

Epsilon Rules: Example

Gabriele Roger (University of Basel) Theory of Computer Science

Regular Grammars

March 23, 2020 10 / 35

C2. Regular Languages: Finite Automata DFAs

C2.2 DFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 11 / 35

C2. Regular Languages: Finite Automata

Overview

Languages
& Grammars

Context-free
Languages

Context-sensitive &
Type-0 Languages

Gabriele Roger (University of Basel) Theory of Computer Science

DFAs

Regular
Grammars

Regular
Expressions

Pumping
Lemma

Minimal
Automata

March 23, 2020 12 /35

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo. 91, qo. 9o, g1, q2.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 13 /35

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Terminology and Notation

C2. Regular Languages: Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M= (Q,%,0d,qo, E) where

> @ is the finite set of states

> Y is the input alphabet (with Q N X = ()
> §:Q x X — Q is the transition function
> qo € Q is the start state

> E C Q is the set of end states

German: deterministischer endlicher Automat, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,
Startzustand, Endzustande

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 15 / 35

1 4 1
OSmOst :
0

> states Q@ = {qo, 91, G2} (g0, 0) =

» input alphabet ¥ = {0,1} 0(go,1) = qo

» transition function § 9(g1,0) = q2

> start state qo 6(qg1,1) = qo

@ (ar,1) table form of §

> end states {q2} 9(g2,0) = q2

6(q2,1) = qo
Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 14 / 35
C2. Regular Languages: Finite Automata DFAs

DFA: Recognized Words

Definition (Words Recognized by a DFA)
DFA M = (Q, X, 4, qo, E) recognizes the word w = a1 ... a,

if there is a sequence of states g, ..., q), € Q with

Q gy = qo.

Q@ i(q)_y,ai))=q; forallie{1,...,n} and

Q g, cE.
German: DFA erkennt das Wort
Example

0 . .
1 + 1 recognizes: does not recognize:
00 €
()= .31 10010100 1001010

- 01000 010001

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 16 / 35

C2. Regular Languages: Finite Automata

DFA: Accepted Language

Definition (Language Accepted by a DFA)
Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € X* | w is recognized by M}.

Example
0

The DFA accepts the language
{w € {0,1}* | w ends with 00}.

1 v 1

(e (=)o

0

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

DFAs

17 / 35

C2. Regular Languages: Finite Automata

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof (continued).
For every w = ajap...a, € L*:
w € L(M)
iff there is a sequence of states q(, qj, - . ., g}, with
g = qo0, 9, € E and 6(q._;,a;) = q forall i € {1,...,n}
iff there is a sequence of variables qg, qi, ..., g}, with

qp is start variable and we have q) = a1q] = ai1a2q5 =
ce- = 3132...anq, = 3132...an.

iff w e L(G) O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

DFAs

19 / 35

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let M =(Q, X, 4, qo, E) be a DFA.

We define a regular grammar G with £(G) = L(M).

Define G = (¥, Q, P, go) where P contains

> arule g — aq’ for every §(g,a) = ¢’, and
> arule g — ¢ for every g € E.

(We can eliminate forbidden epsilon rules

as described at the start of the chapter.)
Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 18 / 35

C2. Regular Languages: Finite Automata DFAs
Question
Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs exactly the
regular languages?
Yes!
We will prove this later (via a detour).
Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 20 / 35

C2. Regular Languages: Finite Automata NFAs

C2.3 NFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 21 / 35

C2. Regular Languages: Finite Automata NFAs

Overview

Regular
Languages Grammars

& Grammars

Regular
Expressions

i Context-free Blimping

Languages] Lemma

L Minimal

| Context-sensitive & Automata
Lo s

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 22 /35

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata

VA VRN

N ‘
" Why are DFAs called
¢ deterministic automata? What are

P . <
(nondeterministic automata,)
B\ then? T)
N [N -
\ A /
\\7 //\\ /’/\\ // -

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 23 /35

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

> multiple start states possible

» transition function § can lead to
zero or more successor states for the same a €

» automaton recognizes a word if there is
at least one accepting sequence of states

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 24 / 35

C2. Regular Languages: Finite Automata

NFA: Recognized Words

Definition (Words Recognized by an NFA)
NFA M =(Q,X,4,S, E) recognizes the word w = a3 ... a,

if there is a sequence of states g, ..., q), € Q with
Q €<,
Q g/ €d(ql_q,a) forallie{l,...,n} and
Q g, cE.
Example
ot ‘ recognizes: does not recognize:
0 €
o /N o
C"_% N @ 10010100 1001010
4 01000 010001

NFAs

C2. Regular Languages: Finite Automata NFAs
Nondeterministic Finite Automaton: Definition
Definition (Nondeterministic Finite Automata)
A nondeterministic finite automaton (NFA) is a 5-tuple
M=(Q,%,d,S, E) where
> @ is the finite set of states
> Y is the input alphabet (with Q N = 0)
> 0:Q x X — P(Q) is the transition function
(mapping to the power set of Q)
> S C Q is the set of start states
> E C Q is the set of end states
German: nichtdeterministischer endlicher Automat
DFAs are (essentially) a special case of NFAs.
Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 25 / 35
C2. Regular Languages: Finite Automata NFAs
NFA: Accepted Language
Definition (Language Accepted by an NFA)
Let M =(Q,%,6,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € * | w is recognized by M}.
Example
CO% v The NFA accepts the language
0 ()20 {we{0,1}* |w=0or
qo q1 q2 Y
7 ~ O w ends with 00}.
Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 27 / 35

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 26 / 35
C2. Regular Languages: Finite Automata NFAs
NFAs are No More Powerful than DFAs
Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.
Proof.
For every NFA M = (Q,%,0, S, E) we can construct
a DFA M’ = (Q', 5,5, g, E') with £(M) = L(M').
Here M’ is defined as follows:
> Q :=P(Q) (the power set of Q)
> qy:=S
> E'={QCQ[QNE #0}
> Forall Qe Q" §(Q,a) := U d(q,a)
qeQ
Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 28 / 35

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).
For every w = ajay...a, € &*:

w € L(M)
iff there is a sequence of states qo, g1, ..., g, with
G €S, gn € E and q; € 6(qj—1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qq, 91, ..., D, with
Qo=qp, Qn€ E and §'(Qj_1,a;)) = Qj forallie {1,...,n}
iff w e L(M') O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 29 / 35

C2. Regular Languages: Finite Automata

NFAs are More Compact than DFAs

Example
For k > 1 consider the language

NFAs

Ly ={w € {0,1}* | |[w| > k and the k-th last symbol of w is 0}.

The language Li can be accepted by an NFA with k + 1 states:

0,1

There is no DFA with less than 2X states that accepts L
(without proof).

NFAs can often represent languages more compactly than DFAs.

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.
Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q,X,6,5', E) with

Q=VU{X}, X¢gV
S’ ={S}
{{S,X} ifS—seeP

{X} ifS—ec¢gP
Bed(Aa)ifA—aBeP
Xed(Aa)ifA—-acP
March 23, 202(;- ' 31 /35

Gabriele Roger (University of Basel) Theory of Computer Science

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 30 /35
C2. Regular Languages: Finite Automata NFAs
Regular Grammars are No More Powerful than NFAs
Theorem
For every regular grammar G there is an NFA M
with £(G) = L(M).
Proof (continued).
For every w = aja...a, € £* with n > 1:
w e L(G)
iff there is a sequence on variables A, Ao, ..., Ap_1 with
S=aAi = a1aA = - = a1ar...ap-1An_1 = 313> ... ap.
iff there is a sequence of variables A;, As, ..., A,_1 with
A € 5(5, 31), A € 5(/41, 32), .., XE 5(An,1, a,,).
iff w € L(M).
Case w = ¢ is also covered because S € Eiff S — ¢ € P. O
Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 32 /35

C2. Regular Languages: Finite Automata

Finite Automata and Regular Languages

regular grammar

[

A

In particular, this implies:

Corollary
L regular <= L is accepted by a DFA.
L regular <= L is accepted by an NFA.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 33/

NFAs

35

C2. Regular Languages: Finite Automata

C2.4 Summary

Gabriele Roger (University of Basel)

Theory of Computer Science

March 23, 2020

Summary

34 /35

C2. Regular Languages: Finite Automata Summary

Summary

» We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

> We will get to know a fourth formalism in the next chapter.

» DFAs are automata where every state transition
is uniquely determined.

» NFAs recognize a word if there is at least one
accepting sequence of states.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 35

/ 35

	Regular Grammars
	

	DFAs
	

	NFAs
	

	Summary
	

