Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Roger

University of Basel

March 23, 2020

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

1/35

Theory of Computer Science
March 23, 2020 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars
C2.2 DFAs

C2.3 NFAs

C2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 2 /35

C2. Regular Languages: Finite Automata Regular Grammars

C2.1 Regular Grammars

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 3 /35

C2. Regular Languages: Finite Automata Regular Grammars

Overview

Languages
& Grammars

— DFAs |
— NFAs |

- Regular
Expressions
i Context-free Pumping
Languages Bl Lemma
] Minimal
Context-sensitive & Automata
Type-0 Languages _| Properties

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 4 /35

C2. Regular Languages: Finite Automata Regular Grammars

Repetition: Regular Grammars

Definition (Regular Grammars)
A regular grammar is a 4-tuple (X, V, P, S) with
Q X finite alphabet of terminals
@ V finite set of variables (with VNE = ()
Q@ PC(Vx(XUXV))U{(S,e)} finite set of rules
Q@ ifS—ce P, thereisno X € V,y e X with X - yS5€P
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 5 /35

C2. Regular Languages: Finite Automata Regular Grammars

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = (¥, V,P,S) there is a grammar

G' = (X,V' P S) with rules P C (V' UX)" x (V' \{S}UX)*
such that L(G) = L(G').

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 6 /35

C2. Regular Languages: Finite Automata Regular Grammars

Start Variable in Right-Hand Side of Rules: Proof

Proof.
Let G =(X,V,P,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set P’ from P as follows:

» for every rule r € P, add a rule r’ to P’, where r’ is the result
of replacing all occurences of S in r with S’

> foreveryrule S— w e P, add arule S — w’ to P/, where w/
is the result of replacing all occurences of S in w with S’

Then L(G) = L((X,VU{S'}, P, S)). O

Note that the rules in P’ are not fundamentally different from the
rules in P. In particular:

> IfPCVx(SUZVU{e}) then P C V' x (ZUZV' U {e}).
> IfPCV x(VUT) then P C V' x (V' UX)*.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

7

C2. Regular Languages: Finite Automata Regular Grammars

Start Variable in Right-Hand Side of Rules: Example

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 8 /35

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem
For every grammar G with rules P C V x (ZUXV U {e})
there is a regular grammar G' with L(G) = L(G").

Proof.

Let G =(X,V,P,S) beagrammars.t. PC V x (XUXV U{e}).
Use the previous proof to construct grammar G’ = (X, V', P"|S)
st. PPCV x (ZUuX(V'\{S})u{e}).

Let V. ={A|A—c€ P}

Let P” be the rule set that is created from P’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B—xAwithAec V.,Be V' ,xe X weaddarule B— xtoP".

Then G” = (X, V', P",S) is regular and L(G) = L(G"). O

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 9 /35

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules: Example

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 10 / 35

C2. Regular Languages: Finite Automata DFAs

C2.2 DFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 11 /35

C2. Regular Languages: Finite Automata DFAs

Overview

Regular
Languages Grammars

B .
— NFAs |

- Regular
Expressions
i Context-free Pumping
Languages Bl Lemma
] Minimal
Context-sensitive & Automata
Type-0 Languages _| Properties

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 12 / 35

C2. Regular Languages: Finite Automata

Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 91, 90, do. 41, G2-

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 13 /35

C2. Regular Languages: Finite Automata

Finite Automata: Terminology and Notation

vVvyVvyyvyy

Gabriele Roger (University of Basel)

1) 1
oOSmO= :
0
states @ = {qo, g1, g2} (g0, 0) = q1
input alphabet ¥ = {0, 1} 0(qo,1) = qo
transition function & 0(q1,0) = g2
start state qg 0(q1,1) = qo
end states {q»} 3(g2,0) = q2
6(q2,1) = qo

Theory of Computer Science

DFAs

table form of &

March 23, 2020

14 / 35

C2. Regular Languages: Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)
A deterministic finite automaton (DFA) is a 5-tuple
M= (Q,%,9, qo, E) where
> (@ is the finite set of states
» Y is the input alphabet (with Q N X = ()
> §: Q@ x X — Q is the transition function
> qo € Q is the start state
> E C Q is the set of end states

German: deterministischer epdlicher Autom_at, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,
Startzustand, Endzustande

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 15 / 35

C2. Regular Languages: Finite Automata

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, %, 6, qo, E) recognizes the word w = a3 ... a,

if there is a sequence of states qp, ..., q), € Q with

Q 9, = qo,

Q 0(q/_4,a;))=gq. forallie{1,...,n} and

Q q,cE.
German: DFA erkennt das Wort
Example

0 . .
. v . recognizes: does not recognize:
00 €
O .:‘>1 10010100 1001010
o 01000 010001

Gabriele Roger (University of Basel) Theory of Computer Science

March 23, 2020

DFAs

16 / 35

C2. Regular Languages: Finite Automata DFAs

DFA: Accepted Language

Definition (Language Accepted by a DFA)
Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M)={w € £* | w is recognized by M}.

Example

0
1 v 1

The DFA accepts the language
1 {w € {0,1}* | w ends with 00}.

0

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 17 / 35

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof.
Let M = (Q, %, 9, qo, E) be a DFA.
We define a regular grammar G with £(G) = L(M).
Define G = (X, Q, P, qo) where P contains
> arule g — aq’ for every 6(q,a) = ¢', and
> arule g — ¢ forevery g € E.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 18 / 35

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof (continued).
For every w = a1a>...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, .. ., q), with

g = qo, q, € E and 6(q}_;,a;) =g} forallie{1,...,n}
iff there is a sequence of variables qg, g1, .. ., g;, with

qp is start variable and we have g = ai1q] = a1a2q5 =
o= 2132...apq, = 3132 ... ap.

iff w € £(G) O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 19 / 35

C2. Regular Languages: Finite Automata

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

DFAs

20 / 35

C2. Regular Languages: Finite Automata NFAs

C2.3 NFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 21 /35

C2. Regular Languages: Finite Automata NFAs

Overview

Regular
Languages Grammars

& Grammars
— DFAs |

- Regular
Expressions
i Context-free Pumping
Languages Bl Lemma
] Minimal
Context-sensitive & Automata
Type-0 Languages _| Properties

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 22 /35

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata

TN S NN
/ AV4 \/ AN

/ \

/" Whyare DFAs called
(deterministic automata? What are
nondeterministic automata,

s then? Ji e -

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 23 /35

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

» multiple start states possible

» transition function ¢ can lead to
zero or more successor states for the same a € X

P> automaton recognizes a word if there is
at least one accepting sequence of states

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 24 / 35

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)
A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,%,,S, E) where

> (@ is the finite set of states

» ¥ is the input alphabet (with Q N X = ()

> §:Q x X — P(Q) is the transition function
(mapping to the power set of Q)

» S C Q is the set of start states
> E C Q is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 25 /35

C2. Regular Languages: Finite Automata NFAs

NFA: Recognized Words

Definition (Words Recognized by an NFA)
NFA M = (Q,%,6,S, E) recognizes the word w = a3 ... a,

if there is a sequence of states g, ..., q, € Q with

Q@ g €S,

Q@ g €0(q._q,a;) forall i e {l,...,n} and

Q@ qg,cE
Example

o1 } recognizes: does not recognize:
é : @ > @ ?0010100 iOOlOlO

u 01000 010001

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 26 / 35

C2. Regular Languages: Finite Automata

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = (Q,%,6,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.

Example
“ v The NFA accepts the language
C% 0 @ 0 @ {we{0,1}* |w=0or

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020

w ends with 00}.

NFAs

27 /35

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof.
For every NFA M = (Q,X%,4,S, E) we can construct
a DFA M' = (Q', %, &, g, E') with L(M) = L(M').
Here M’ is defined as follows:

> Q' :="P(Q) (the power set of Q)

> g,=S

> E:={QCQ|QNE#D}

> Forall Qe Q: §(Q,a) = | d(q,a)

qeQ

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 28 / 35

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).
For every w = a1ay...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, ..., g, with
G €S, qn € E and g € 6(qi—1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qgp, 91, ..., Q, with
Qo =qy Qn € E and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M") O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 29 / 35

C2. Regular Languages: Finite Automata NFAs

NFAs are More Compact than DFAs

Example
For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k 4 1 states:

0,1

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 30/ 35

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.
Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q, ¥, 5, ', E) with

RQ=VU{X}, XgV
s'={s}
E:{{S,X} ifS—secP
{X} ifS—edgP
Bed(Aa)ifA—»aBeP
X ed(Aa)if A»acP

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 31 /35

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).
For every w = a1ay...a, € ¥* with n > 1:

w e L(G)
iff there is a sequence on variables A;, Ao, ..., A,_1 with
S = a1A1 = a1a0A = - = a1ar...a,-1An_1 = a1a2... an.
iff there is a sequence of variables Ay, Ay, ..., A,_1 with
A € 5(5,31),/42 S 5(A1, 32), L XE 5(A,,,1,a,,).
iff w € L(M).
Case w = ¢ is also covered because S € Eiff S ¢ € P. O

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 32 /35

C2. Regular Languages: Finite Automata

Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

Corollary
L regular <= L is accepted by a DFA.
L regular <= L is accepted by an NFA.

Gabriele Roger (University of Basel) Theory of Computer Science

March 23, 2020

NFAs

33 /35

C2. Regular Languages: Finite Automata Summary

C2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 34 /35

C2. Regular Languages: Finite Automata Summary

Summary

» We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

> We will get to know a fourth formalism in the next chapter.

> DFAs are automata where every state transition
is uniquely determined.

> NFAs recognize a word if there is at least one
accepting sequence of states.

Gabriele Roger (University of Basel) Theory of Computer Science March 23, 2020 35/ 35

	Regular Grammars
	

	DFAs
	

	NFAs
	

	Summary
	

