

Theory of Computer Science

C2. Regular Languages: Finite Automata

Gabriele Röger

University of Basel

March 23, 2020

Theory of Computer Science

March 23, 2020 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars

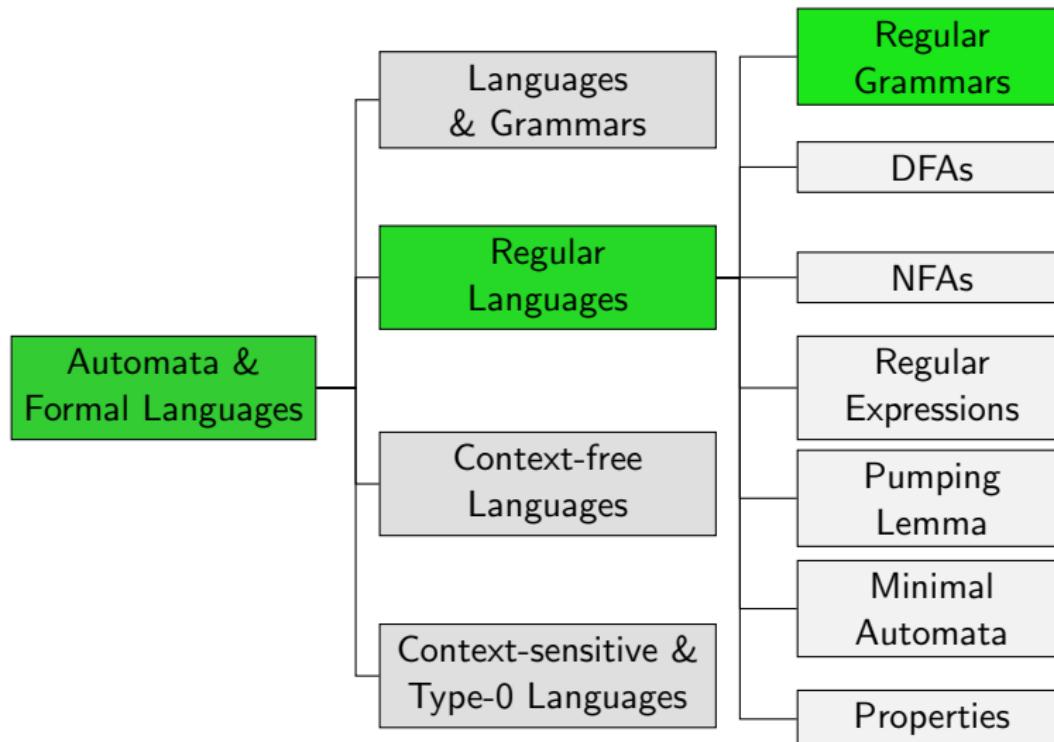
C2.2 DFAs

C2.3 NFAs

C2.4 Summary

C2.1 Regular Grammars

Overview



Repetition: Regular Grammars

Definition (Regular Grammars)

A regular **grammar** is a 4-tuple $\langle \Sigma, V, P, S \rangle$ with

- ① Σ finite alphabet of terminals
- ② V finite set of variables (with $V \cap \Sigma = \emptyset$)
- ③ $P \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules
- ④ if $S \rightarrow \varepsilon \in P$, there is no $X \in V, y \in \Sigma$ with $X \rightarrow yS \in P$
- ⑤ $S \in V$ start variable.

Rule $X \rightarrow \varepsilon$ is only allowed if $X = S$ and
 S never occurs in the right-hand side of a rule.
How restrictive is this?

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

Theorem

For every grammar $G = \langle \Sigma, V, P, S \rangle$ there is a grammar $G' = \langle \Sigma, V', P', S \rangle$ with rules $P' \subseteq (V' \cup \Sigma)^+ \times (V' \setminus \{S\} \cup \Sigma)^$ such that $\mathcal{L}(G) = \mathcal{L}(G')$.*

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar and $S' \notin V$ be a new variable. Construct rule set P' from P as follows:

- ▶ for every rule $r \in P$, add a rule r' to P' , where r' is the result of replacing all occurrences of S in r with S' .
- ▶ for every rule $S \rightarrow w \in P$, add a rule $S \rightarrow w'$ to P' , where w' is the result of replacing all occurrences of S in w with S' .

Then $\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V \cup \{S'\}, P', S \rangle)$. □

Note that the rules in P' are not fundamentally different from the rules in P . In particular:

- ▶ If $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ then $P' \subseteq V' \times (\Sigma \cup \Sigma V' \cup \{\varepsilon\})$.
- ▶ If $P \subseteq V \times (V \cup \Sigma)^*$ then $P' \subseteq V' \times (V' \cup \Sigma)^*$.

Start Variable in Right-Hand Side of Rules: Example

Epsilon Rules

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar s.t. $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$. Use the previous proof to construct grammar $G' = \langle \Sigma, V', P', S \rangle$ s.t. $P' \subseteq V' \times (\Sigma \cup \Sigma(V' \setminus \{S\}) \cup \{\varepsilon\})$.

Let $V_\varepsilon = \{A \mid A \rightarrow \varepsilon \in P'\}$.

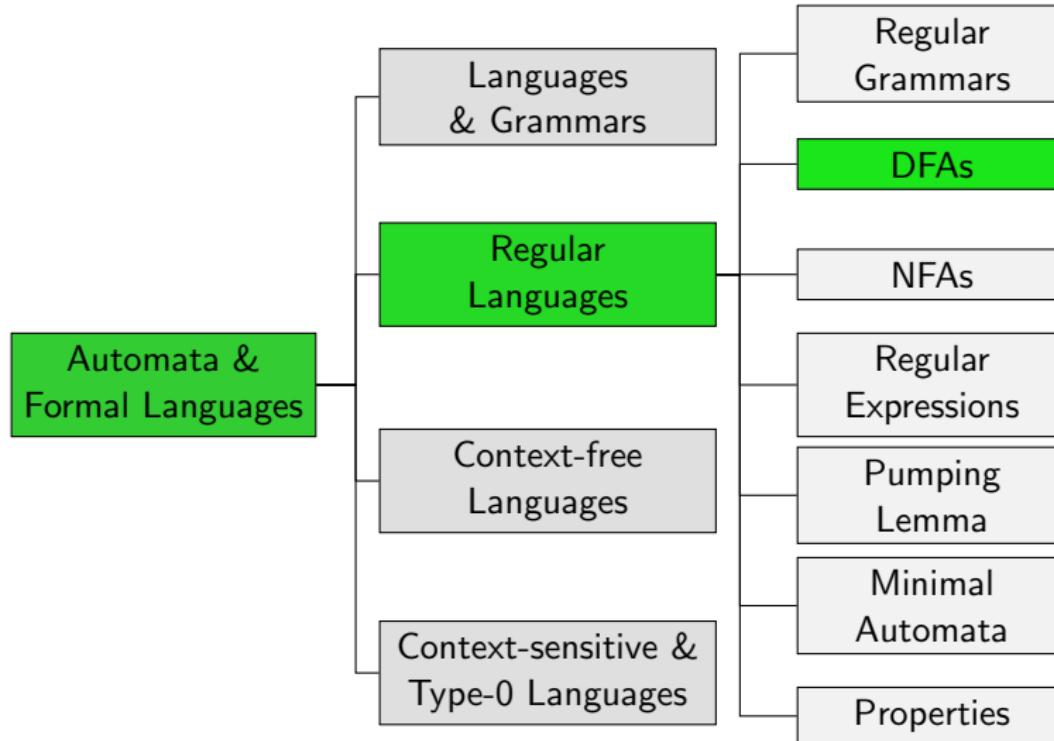
Let P'' be the rule set that is created from P' by removing all rules of the form $A \rightarrow \varepsilon$ ($A \neq S$). Additionally, for every rule of the form $B \rightarrow xA$ with $A \in V_\varepsilon$, $B \in V'$, $x \in \Sigma$ we add a rule $B \rightarrow x$ to P'' .

Then $G'' = \langle \Sigma, V', P'', S \rangle$ is regular and $\mathcal{L}(G) = \mathcal{L}(G'')$. □

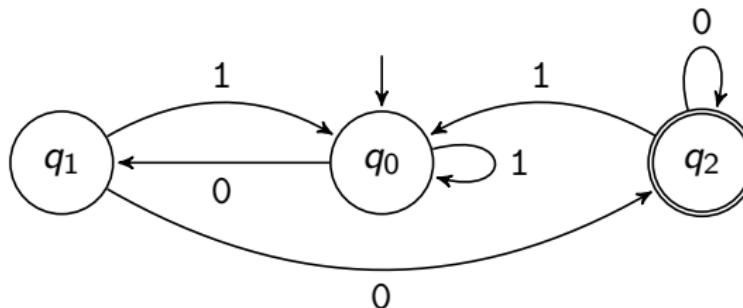
Epsilon Rules: Example

C2.2 DFAs

Overview

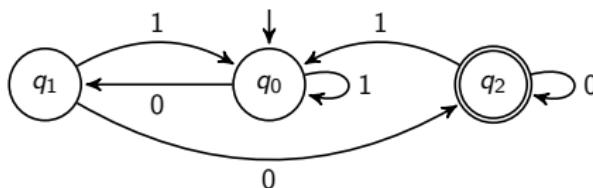


Finite Automata: Example



When reading the input 01100 the automaton visits the states $q_0, q_1, q_0, q_0, q_1, q_2$.

Finite Automata: Terminology and Notation



- ▶ states $Q = \{q_0, q_1, q_2\}$ $\delta(q_0, 0) = q_1$
- ▶ input alphabet $\Sigma = \{0, 1\}$ $\delta(q_0, 1) = q_0$
- ▶ transition function δ $\delta(q_1, 0) = q_2$
- ▶ start state q_0 $\delta(q_1, 1) = q_0$
- ▶ end states $\{q_2\}$ $\delta(q_2, 0) = q_2$
- ▶ $\delta(q_2, 1) = q_0$

	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_0

table form of δ

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A **deterministic finite automaton (DFA)** is a 5-tuple

$M = \langle Q, \Sigma, \delta, q_0, E \rangle$ where

- ▶ Q is the finite set of **states**
- ▶ Σ is the **input alphabet** (with $Q \cap \Sigma = \emptyset$)
- ▶ $\delta : Q \times \Sigma \rightarrow Q$ is the **transition function**
- ▶ $q_0 \in Q$ is the **start state**
- ▶ $E \subseteq Q$ is the set of **end states**

German: deterministischer endlicher Automat, Zustände, Eingabealphabet, Überführungs-/Übergangsfunktion, Startzustand, Endzustände

DFA: Recognized Words

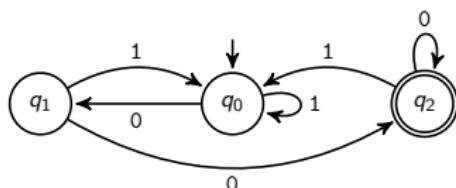
Definition (Words Recognized by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ **recognizes the word** $w = a_1 \dots a_n$
 if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- ① $q'_0 = q_0$,
- ② $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \dots, n\}$ and
- ③ $q'_n \in E$.

German: DFA erkennt das Wort

Example



recognizes:

- 00
- 10010100
- 01000

does not recognize:

- ε
- 1001010
- 010001

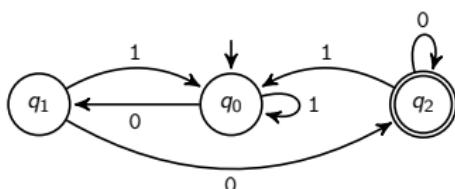
DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.

The **language accepted by M** is defined as
 $\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is recognized by } M\}.$

Example



The DFA accepts the language
 $\{w \in \{0, 1\}^* \mid w \text{ ends with } 00\}.$

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA.

We define a regular grammar G with $\mathcal{L}(G) = \mathcal{L}(M)$.

Define $G = \langle \Sigma, Q, P, q_0 \rangle$ where P contains

- ▶ a rule $q \rightarrow aq'$ for every $\delta(q, a) = q'$, and
- ▶ a rule $q \rightarrow \varepsilon$ for every $q \in E$.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)

...

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$:

$w \in \mathcal{L}(M)$

iff there is a sequence of states q'_0, q'_1, \dots, q'_n with

$q'_0 = q_0$, $q'_n \in E$ and $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \dots, n\}$

iff there is a sequence of variables q'_0, q'_1, \dots, q'_n with

q'_0 is start variable and we have $q'_0 \Rightarrow a_1 q'_1 \Rightarrow a_1 a_2 q'_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_n q'_n \Rightarrow a_1 a_2 \dots a_n$.

iff $w \in \mathcal{L}(G)$

Example: blackboard

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs **exactly** the
regular languages?

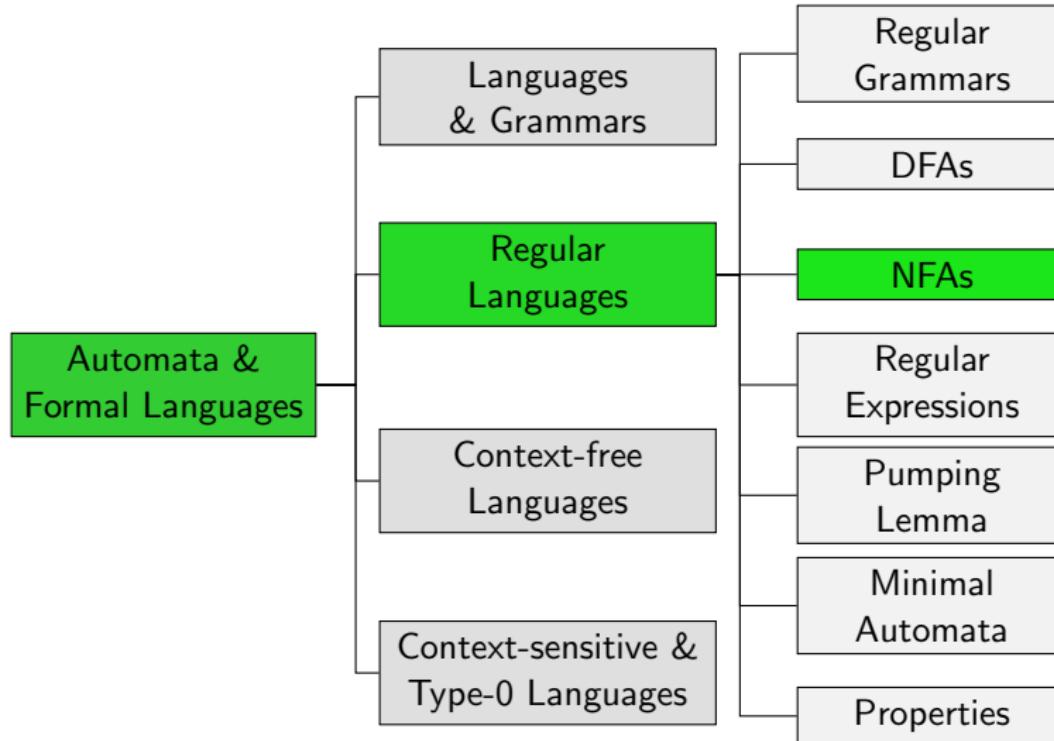
Yes!

We will prove this later (via a detour).

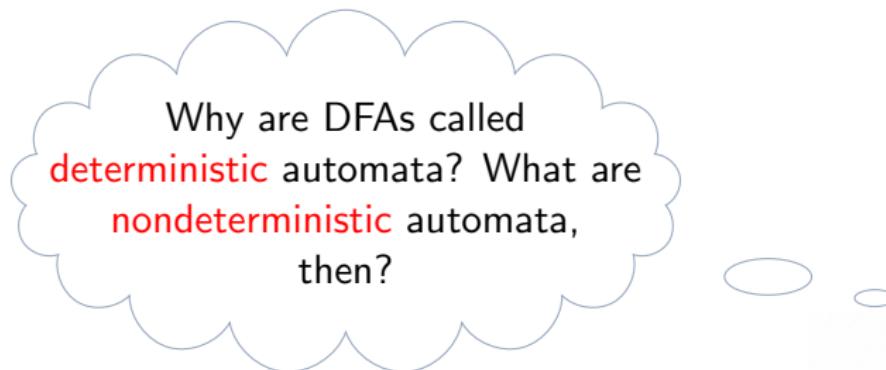
Picture courtesy of imagerymajestic.com / FreeDigitalPhotos.net

C2.3 NFAs

Overview

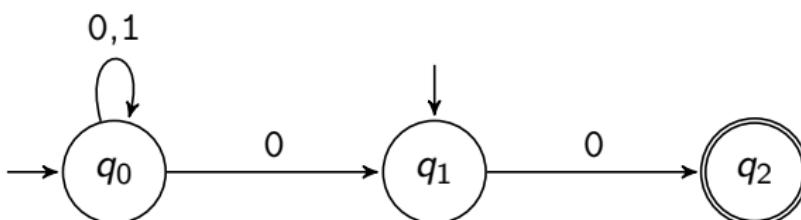


Nondeterministic Finite Automata



Picture courtesy of stockimages / FreeDigitalPhotos.net

Nondeterministic Finite Automata: Example



differences to DFAs:

- ▶ multiple start states possible
- ▶ transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ▶ automaton recognizes a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A **nondeterministic finite automaton (NFA)** is a 5-tuple $M = \langle Q, \Sigma, \delta, S, E \rangle$ where

- ▶ Q is the finite set of **states**
- ▶ Σ is the **input alphabet** (with $Q \cap \Sigma = \emptyset$)
- ▶ $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is the **transition function** (mapping to the **power set** of Q)
- ▶ $S \subseteq Q$ is the set of **start states**
- ▶ $E \subseteq Q$ is the set of **end states**

German: nichtdeterministischer endlicher Automat

DFA are (essentially) a special case of NFAs.

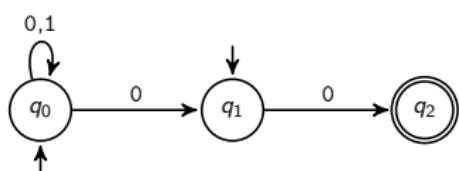
NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ **recognizes the word** $w = a_1 \dots a_n$
if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- ① $q'_0 \in S$,
- ② $q'_i \in \delta(q'_{i-1}, a_i)$ for all $i \in \{1, \dots, n\}$ and
- ③ $q'_n \in E$.

Example



recognizes:

- 0
- 10010100
- 01000

does not recognize:

- ϵ
- 1001010
- 010001

NFA: Accepted Language

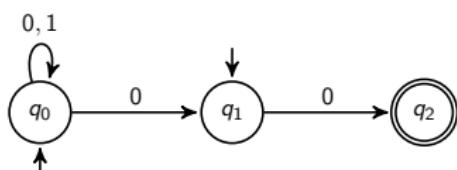
Definition (Language Accepted by an NFA)

Let $M = \langle Q, \Sigma, \delta, S, E \rangle$ be a nondeterministic finite automaton.

The **language accepted by M** is defined as

$$\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is recognized by } M\}.$$

Example



The NFA accepts the language
 $\{w \in \{0, 1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}.$

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, E' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$.
Here M' is defined as follows:

- ▶ $Q' := \mathcal{P}(Q)$ (the power set of Q)
- ▶ $q'_0 := S$
- ▶ $E' := \{Q \subseteq Q \mid Q \cap E \neq \emptyset\}$
- ▶ For all $Q \in Q'$: $\delta'(Q, a) := \bigcup_{q \in Q} \delta(q, a)$

...

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$:

$w \in \mathcal{L}(M)$

iff there is a sequence of states q_0, q_1, \dots, q_n with

$q_0 \in S$, $q_n \in E$ and $q_i \in \delta(q_{i-1}, a_i)$ for all $i \in \{1, \dots, n\}$

iff there is a sequence of subsets $\mathcal{Q}_0, \mathcal{Q}_1, \dots, \mathcal{Q}_n$ with

$\mathcal{Q}_0 = q'_0$, $\mathcal{Q}_n \in E'$ and $\delta'(\mathcal{Q}_{i-1}, a_i) = \mathcal{Q}_i$ for all $i \in \{1, \dots, n\}$

iff $w \in \mathcal{L}(M')$

Example: blackboard

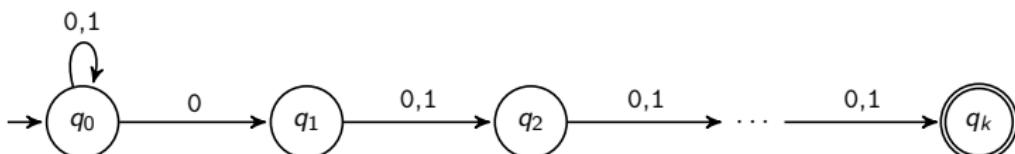
NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language

$$L_k = \{w \in \{0, 1\}^* \mid |w| \geq k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$$

The language L_k can be accepted by an NFA with $k + 1$ states:



There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a regular grammar.

Define NFA $M = \langle Q, \Sigma, \delta, S', E \rangle$ with

$$Q = V \cup \{X\}, \quad X \notin V$$

$$S' = \{S\}$$

$$E = \begin{cases} \{S, X\} & \text{if } S \xrightarrow{\epsilon} \in P \\ \{X\} & \text{if } S \xrightarrow{\epsilon} \notin P \end{cases}$$

$$B \in \delta(A, a) \text{ if } A \xrightarrow{a} B \in P$$

$$X \in \delta(A, a) \text{ if } A \xrightarrow{a} \in P$$

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$ with $n \geq 1$:

$w \in \mathcal{L}(G)$

iff there is a sequence on variables A_1, A_2, \dots, A_{n-1} with

$S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \dots a_n$.

iff there is a sequence of variables A_1, A_2, \dots, A_{n-1} with

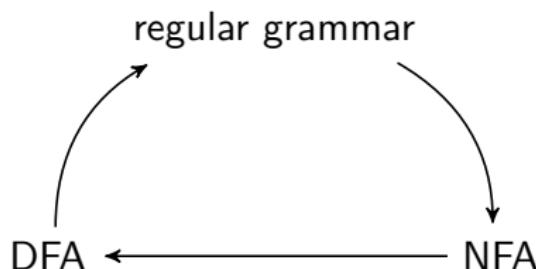
$A_1 \in \delta(S, a_1), A_2 \in \delta(A_1, a_2), \dots, X \in \delta(A_{n-1}, a_n)$.

iff $w \in \mathcal{L}(M)$.

Case $w = \varepsilon$ is also covered because $S \in E$ iff $S \rightarrow \varepsilon \in P$.

□

Finite Automata and Regular Languages



In particular, this implies:

Corollary

\mathcal{L} regular \iff \mathcal{L} is accepted by a DFA.

\mathcal{L} regular \iff \mathcal{L} is accepted by an NFA.

C2.4 Summary

Summary

- ▶ We now know **three formalisms** that all **describe exactly the regular languages**: regular grammars, DFAs and NFAs
- ▶ We will get to know a fourth formalism in the next chapter.
- ▶ **DFAs** are automata where **every state transition is uniquely determined**.
- ▶ **NFAs** recognize a word if there is **at least one accepting sequence of states**.