Theory of Computer Science

C1. Formal Languages and Grammars

Gabriele Roger

University of Basel

March 18, 2020

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020

1/24

Theory of Computer Science
March 18, 2020 — C1. Formal Languages and Grammars

C1.1 Introduction

C1.2 Alphabets and Formal Languages
C1.3 Grammars

C1.4 Chomsky Hierarchy

C1.5 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 2 /24

C1. Formal Languages and Grammars Introduction

C1.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 3 /24

C1. Formal Languages and Grammars

Course Contents

Parts of the course:

A.

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 4/

background v/
> mathematical foundations and proof techniques
logic (Logik) v/
> How can knowledge be represented?
How can reasoning be automated?

automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?

. Turing computability (Turing-Berechenbarkeit)

> What can be computed at all?

complexity theory (Komplexitdtstheorie)
> What can be computed efficiently?

more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability

Introduction

24

C1. Formal Languages and Grammars Introduction

Example: Propositional Formulas

from the logic part:

Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

> Every atom a € A is a propositional formula over A.

> If ¢ is a propositional formula over A,
then so is its negation —¢.

» If ¢ and 1) are propositional formulas over A,
then so is the conjunction (¢ A).

» If ¢ and 1 are propositional formulas over A,
then so is the disjunction (¢ V).

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 5 /24

C1. Formal Languages and Grammars

Example: Propositional Formulas

Let S4 be the set of all propositional formulas over A.
Such sets of symbol sequences (or words) are called languages.

Sought: General concepts to define such (often infinite) languages
with finite descriptions.
» today: grammars

P> |ater: automata

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020

6/

Introduction

C1. Formal Languages and Grammars Introduction

Example: Propositional Formulas

Example (Grammar for Sg,p c})

Grammar variables {F, A, N, C,D} with start variable F,
terminal symbols {a,b,c,—, A, V, (,)} and rules

F—A A—a N — —F
F—N A—Db C— (FAP
F—C A—c D— (FVF)
F—D

Start with F. In each step, replace a left-hand side of a rule
with its right-hand side until no more variables are left:

F=N=-F=-D=~(FVF) = ~(AVF) = ~(bVF)
= ~(bVA) = ~(bVc)

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 7/ 24

C1. Formal Languages and Grammars Alphabets and Formal Languages

C1.2 Alphabets and Formal
Languages

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 8 /24

C1. Formal Languages and Grammars Alphabets and Formal Languages

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)
An alphabet X is a finite non-empty set of symbols.

A word over % is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over ¥.

Y (= £*\ {€}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

A formal language (over alphabet ¥) is a subset of ¥*.
German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

Y ={a,b}

Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 9 /24

C1. Formal Languages and Grammars Alphabets and Formal Languages

Languages: Examples

Example (Languages over ¥ = {a, b})

> S = {a,aa, aaa, azaaa,...} = {a}"

> S =X%*

> S3={a"" | n> 0} = {¢, ab, aabb, aaabbb, ... }

> S5 ={c}

> S5 =10

» Se¢ = {w € * | w contains twice as many as as bs}

= {e,aab, aba, baa, ...}
Ss={weXl*||w =3}
= {aaa, aab, aba, baa, bba, bab, abb, bbb}

v

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 10 / 24

C1. Formal Languages and Grammars Grammars

C1.3 Grammars

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 11 /24

C1. Formal Languages and Grammars Grammars

Grammars

Definition (Grammars)
A grammar is a 4-tuple (X, V, P, S) with:
© X finite alphabet of terminal symbols

@ V finite set of variables (nonterminal symbols)
with VNE =0

Q@ PC(VUX)" x (VUZX)* finite set of rules (or productions)
© S € V start variable

German: Grammatik, Terminalalphabet, Variablen, Regeln/Produktionen,
Startvariable

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 12 / 24

C1. Formal Languages and Grammars Grammars

Rule Sets

What exactly does P C (VU)" x (VUX)* mean?
» (VUX)": all words over (V UX)
> (VUX)": all non-empty words over (V UX)
in general, for set X: X+ = X*\ {¢}
» x: Cartesian product
(VUI)" x (VUZ)*: set of all pairs (x,y), where x
non-empty word over (V UX) and y word over (V UX)

v

v

Instead of (x,y) we usually write rules in the form x — y.

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 13 /24

C1. Formal Languages and Grammars

Rules: Examples

Example
Let ¥ = {a,b,c} and V = {X,Y,Z}.

Some examples of rules in (VUX)T x (VUX)*:

X — XaY
Yb — a
XY = ¢

XYZ — abc
abc — XYZ

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020

Grammars

14 / 24

C1. Formal Languages and Grammars Grammars

Derivations

Definition (Derivations)

Let (X,V,P,S) be a grammar. A word v € (V UX)* can be
derived from word u € (V UX)" (written as u = v) if

Q@ u=xyz, v=xy'z with x,z € (VUX)* and
Q thereisaruley — y € P.
We write: u =" v if v can be derived from u in finitely many steps

(i.e., by using n derivations for n € Np).

German: Ableitung

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 15 / 24

C1. Formal Languages and Grammars Grammars

Language Generated by a Grammar

Definition (Languages)
The language generated by a grammar G = (X, V, P, S)

L(G)={weX"|S="w}

is the set of all words from X * that can be derived from S
with finitely many rule applications.

German: erzeugte Sprache

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 16 / 24

C1. Formal Languages and Grammars Grammars

Grammars

Examples: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 17 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

C1.4 Chomsky Hierarchy

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 18 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

Grammars are organized into the Chomsky hierarchy.

Definition (Chomsky Hierarchy)
» Every grammar is of type 0 (all rules allowed).
» Grammar is of type 1 (context-sensitive)
if all rules wy — wy satisfy |wy| < |wal.
» Grammar is of type 2 (context-free)
if additionally wy € V (single variable) in all rules wy — wo.

» Grammar is of type 3 (regular)
if additionally wo, € X U XV in all rules wy — w».

special case: rule S — ¢ is always allowed if S is the start variable
and never occurs on the right-hand side of any rule.

German: Chomsky-Hierarchie, Typ 0, Typ 1 (kontextsensitiv),

Typ 2 (kontextfrei), Typ 3 (regular)

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020

19 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

Definition (Type 0-3 Languages)

A language L C X* is of type 0 (type 1, type 2, type 3)

if there exists a type-0 (type-1, type-2, type-3) grammar G
with £(G) = L.

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 20 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Type k Language: Example

Example

Consider the language L generated by the grammar
({a,b,c,—, A, Vv, (D} {F,A,N,C,D}, P,F)

with the following rules P:

F—A A—a N — —F
F—N A—=bD C—o((FAP
F=-C A—=c D—(FVF)
F—D

Questions:

» Is L a type-0 language?
> Is L a type-1 language?
> Is L a type-2 language?
> Is L a type-3 language?

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 21 /24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

[regular languages (type 3)}

context free languages (type 2)

context sensitive languages (type 1)

Type-0 languages

All languages

Note: Not all languages can be described by grammars. (Proof?)

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 22 /24

C1. Formal Languages and Grammars Summary

C1.5 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020 23 /24

C1. Formal Languages and Grammars

Summary

» Languages are sets of symbol sequences.
» Grammars are one possible way to specify languages.

» Language generated by a grammar is the set of all words
(of terminal symbols) derivable from the start symbol.

» Chomsky hierarchy distinguishes between languages
at different levels of expressiveness.

following chapters:
> more about regular languages

> automata as alternative representation of languages

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2020

Summary

24 /24

	Introduction
	

	Alphabets and Formal Languages
	

	Grammars
	

	Chomsky Hierarchy
	

	Summary
	

