

Theory of Computer Science

B5. Predicate Logic II

Gabriele Röger

University of Basel

March 16, 2020

Theory of Computer Science

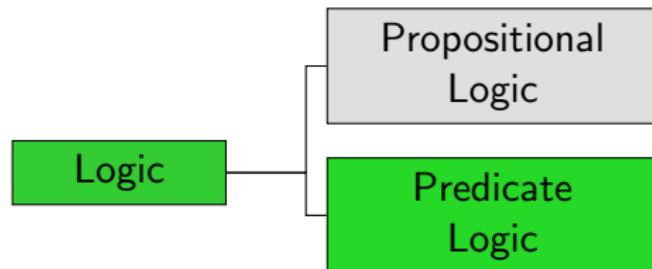
March 16, 2020 — B5. Predicate Logic II

B5.1 Logical Consequences

B5.2 Further Topics

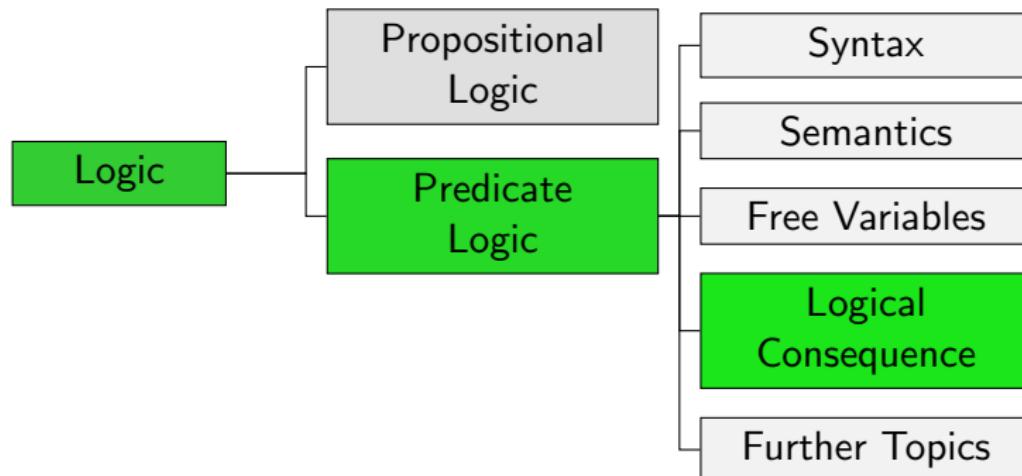
B5.3 Summary

Logic: Overview



B5.1 Logical Consequences

Logic: Overview



Terminology for Formulas

The terminology we introduced for propositional logic similarly applies to predicate logic:

- ▶ Interpretation \mathcal{I} and variable assignment α form a **model** of the formula φ if $\mathcal{I}, \alpha \models \varphi$.
- ▶ Formula φ is **satisfiable** if $\mathcal{I}, \alpha \models \varphi$ for at least one \mathcal{I}, α .
- ▶ Formula φ is **falsifiable** if $\mathcal{I}, \alpha \not\models \varphi$ for at least one \mathcal{I}, α .
- ▶ Formula φ is **valid** if $\mathcal{I}, \alpha \models \varphi$ for all \mathcal{I}, α .
- ▶ Formula φ is **unsatisfiable** if $\mathcal{I}, \alpha \not\models \varphi$ for all \mathcal{I}, α .
- ▶ Formulas φ and ψ are **logically equivalent**, written as $\varphi \equiv \psi$, if they have the same models.

German: Modell, erfüllbar, falsifizierbar, gültig, unerfüllbar, logisch äquivalent

Sets of Formulas: Semantics

Definition (Satisfied/True Sets of Formulas)

Let \mathcal{S} be a signature, Φ a set of formulas over \mathcal{S} ,
 \mathcal{I} an interpretation for \mathcal{S} and α a variable assignment for \mathcal{S}
and the universe of \mathcal{I} .

We say that \mathcal{I} and α **satisfy** the formulas Φ
(also: Φ is **true** under \mathcal{I} and α), written as: $\mathcal{I}, \alpha \models \Phi$,
if $\mathcal{I}, \alpha \models \varphi$ for all $\varphi \in \Phi$.

German: \mathcal{I} und α erfüllen Φ , Φ ist wahr unter \mathcal{I} und α

Terminology for Sets of Formulas and Sentences

- ▶ Again, we use the same notations and concepts as in propositional logic.

Example:

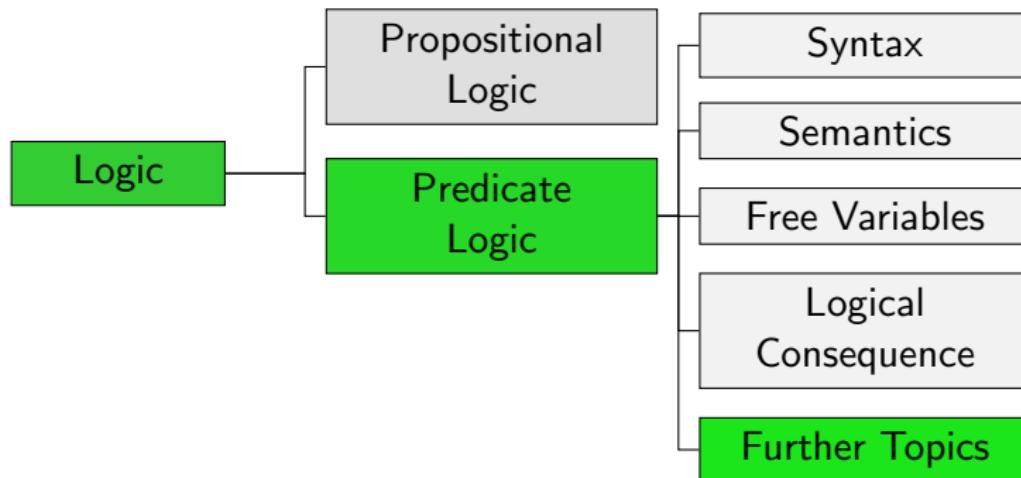
- ▶ A set of formulas Φ is satisfiable if $\mathcal{I}, \alpha \models \Phi$ for at least one \mathcal{I}, α .
- ▶ A set of formulas Φ (logically) implies formula ψ , written as $\Phi \models \psi$, if all models of Φ are models of ψ .
- ▶ All concepts can be used for the special case of **sentences** (or sets of sentences). In this case we usually omit α .

Examples:

- ▶ Interpretation \mathcal{I} is a **model** of a sentence φ if $\mathcal{I} \models \varphi$.
- ▶ Sentence φ is **unsatisfiable** if $\mathcal{I} \not\models \varphi$ for all \mathcal{I} .
- ▶ similarly:
 - ▶ $\varphi \models \psi$ if $\{\varphi\} \models \psi$
 - ▶ $\Phi \models \Psi$ if $\Phi \models \psi$ for all $\psi \in \Psi$

B5.2 Further Topics

Logic: Overview



Further Topics

Based on these definitions we could cover the same topics as in propositional logic:

- ▶ important **logical equivalences**
- ▶ **normal forms**
- ▶ theorems about reasoning (deduction theorem etc.)

We briefly discuss some general results on those topics but will not go into detail.

Logical Equivalences

- ▶ All logical equivalences of propositional logic also hold in predicate logic (e.g., $(\varphi \vee \psi) \equiv (\psi \vee \varphi)$). (Why?)
- ▶ Additionally the following equivalences and implications hold:

$$(\forall x \varphi \wedge \forall x \psi) \equiv \forall x (\varphi \wedge \psi)$$

$$(\forall x \varphi \vee \forall x \psi) \models \forall x (\varphi \vee \psi) \quad \text{but not vice versa}$$

$$(\forall x \varphi \wedge \psi) \equiv \forall x (\varphi \wedge \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$(\forall x \varphi \vee \psi) \equiv \forall x (\varphi \vee \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$\neg \forall x \varphi \equiv \exists x \neg \varphi$$

$$\exists x (\varphi \vee \psi) \equiv (\exists x \varphi \vee \exists x \psi) \quad \text{but not vice versa}$$

$$\exists x (\varphi \wedge \psi) \models (\exists x \varphi \wedge \exists x \psi) \quad \text{but not vice versa}$$

$$(\exists x \varphi \vee \psi) \equiv \exists x (\varphi \vee \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$(\exists x \varphi \wedge \psi) \equiv \exists x (\varphi \wedge \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$\neg \exists x \varphi \equiv \forall x \neg \varphi$$

Normal Forms

Analogously to DNF and CNF for propositional logic there are several normal forms for predicate logic, such as

- ▶ **negation normal form (NNF):**
negation symbols (\neg) are only allowed in front of atoms
- ▶ **prenex normal form:**
quantifiers must form the outermost part of the formula
- ▶ **Skolem normal form:**
prenex normal form without existential quantifiers

German: Negationsnormalform, Pränexnormalform, Skolemnormalform

Normal Forms (ctd.)

Efficient methods transform formula φ

- ▶ into an **equivalent** formula in **negation normal form**,
- ▶ into an **equivalent** formula in **prenex normal form**, or
- ▶ into an **equisatisfiable** formula in **Skolem normal form**.

German: erfüllbarkeitsäquivalent

B5.3 Summary

Summary

- ▶ **Predicate logic** is more expressive than propositional logic and allows statements over **objects** and their **properties**.
- ▶ Objects are described by **terms** that are built from variable, constant and function symbols.
- ▶ Properties and relations are described by **formulas** that are built from predicates, quantifiers and the usual logical operators.
- ▶ **Bound** vs. **free** variables: to decide if $\mathcal{I}, \alpha \models \varphi$, only free variables in α matter
- ▶ **Sentences** (closed formulas): formulas without free variables

Summary

Once the basic definitions are in place, predicate logic can be developed in the same way as propositional logic:

- ▶ logical consequences
- ▶ logical equivalences
- ▶ normal forms
- ▶ deduction theorem etc.

Other Logics

- ▶ We considered **first-order** predicate logic.
- ▶ **Second-order** predicate logic allows quantifying over predicate symbols.
- ▶ There are intermediate steps, e. g. monadic second-order logic (all quantified predicates are unary).
- ▶ **Modal logics** have new operators \Box and \Diamond .
 - ▶ classical meaning: $\Box\varphi$ for “ φ is necessary”,
 $\Diamond\varphi$ for “ φ is possible”.
 - ▶ temporal logic: $\Box\varphi$ for “ φ is always true in the future”,
 $\Diamond\varphi$ for “ φ is true at some point in the future”
 - ▶ deontic logic: $\Box\varphi$ for “ φ is obligatory”,
 $\Diamond\varphi$ for “ φ is permitted”
 - ▶ ...
- ▶ In **fuzzy logic**, formulas are not true or false but have values between 0 and 1.

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **logic ✓**
 - ▷ How can knowledge be represented?
 - How can reasoning be automated?
- C. **automata theory and formal languages**
 - ▷ What is a computation?
- D. **Turing computability**
 - ▷ What can be computed at all?
- E. **complexity theory**
 - ▷ What can be computed efficiently?
- F. **more computability theory**
 - ▷ Other models of computability