

Theory of Computer Science

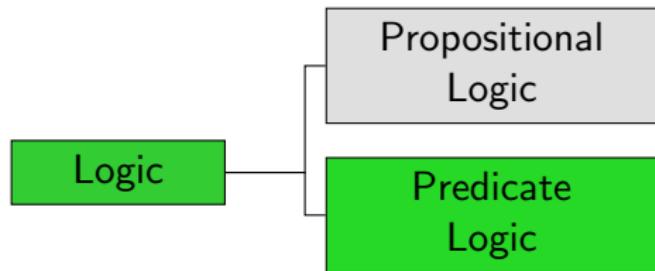
B4. Predicate Logic I

Gabriele Röger

University of Basel

March 9, 2020

Logic: Overview



Motivation

●○

Syntax

○○○○○○○○○○○○

Semantics

○○○○○○○○○○○○

Free/Bound Variables

○○○○○○○○

Summary

○○

Motivation

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- “Everyone who does the exercises passes the exam.”
- “If someone with administrator privileges presses ‘delete’, all data is gone.”
- “Everyone has a mother.”
- “If someone is the father of some person, the person is his child.”

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- “Everyone who does the exercises passes the exam.”
- “If someone with administrator privileges presses ‘delete’, all data is gone.”
- “Everyone has a mother.”
- “If someone is the father of some person, the person is his child.”

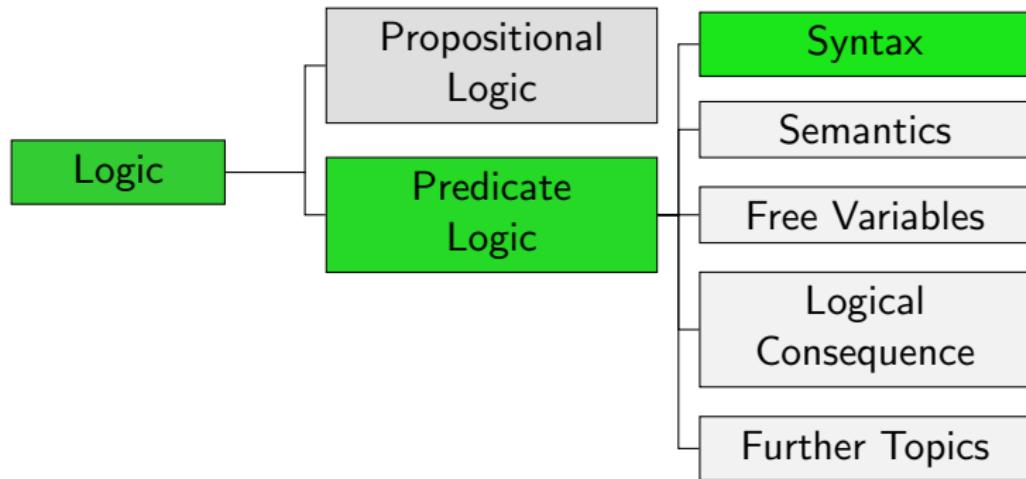
▷ need more expressive logic

~~ predicate logic

German: Prädikatenlogik

Syntax of Predicate Logic

Logic: Overview



Syntax: Building Blocks

- **Signatures** define allowed symbols.
analogy: variable set A in propositional logic
- **Terms** are associated with objects by the semantics.
no analogy in propositional logic
- **Formulas** are associated with truth values (true or false)
by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel

Signatures: Definition

Definition (Signature)

A **signature** (of predicate logic) is a 4-tuple $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ consisting of the following four disjoint sets:

- a finite or countable set \mathcal{V} of **variable symbols**
- a finite or countable set \mathcal{C} of **constant symbols**
- a finite or countable set \mathcal{F} of **function symbols**
- a finite or countable set \mathcal{P} of **predicate symbols**
(or **relation symbols**)

Every function symbol $f \in \mathcal{F}$ and predicate symbol $P \in \mathcal{P}$ has an associated **arity** $ar(f), ar(P) \in \mathbb{N}_0$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

Signatures: Terminology and Conventions

terminology:

- *k-ary* (function or predicate) symbol:
symbol s with arity $ar(s) = k$.
- also: *unary*, *binary*, *ternary*

German: *k-stellig*, *unär*, *binär*, *ternär*

conventions (in this lecture):

- variable symbols written in *italics*,
other symbols upright.
- predicate symbols begin with capital letter,
other symbols with lower-case letters

Signatures: Examples

Example: Arithmetic

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{zero}, \text{one}\}$
- $\mathcal{F} = \{\text{sum}, \text{product}\}$
- $\mathcal{P} = \{\text{Positive}, \text{SquareNumber}\}$

$ar(\text{sum}) = ar(\text{product}) = 2$, $ar(\text{Positive}) = ar(\text{SquareNumber}) = 1$

Signatures: Examples

Example: Genealogy

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{roger-federer}, \text{lisa-simpson}\}$
- $\mathcal{F} = \emptyset$
- $\mathcal{P} = \{\text{Female}, \text{Male}, \text{Parent}\}$

$ar(\text{Female}) = ar(\text{Male}) = 1, ar(\text{Parent}) = 2$

Terms: Definition

Definition (Term)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

A **term** (over \mathcal{S}) is inductively constructed according to the following rules:

- Every variable symbol $v \in \mathcal{V}$ is a term.
- Every constant symbol $c \in \mathcal{C}$ is a term.
- If t_1, \dots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k , then $f(t_1, \dots, t_k)$ is a term.

German: Term

Terms: Definition

Definition (Term)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

A **term** (over \mathcal{S}) is inductively constructed according to the following rules:

- Every variable symbol $v \in \mathcal{V}$ is a term.
- Every constant symbol $c \in \mathcal{C}$ is a term.
- If t_1, \dots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k , then $f(t_1, \dots, t_k)$ is a term.

German: Term

examples:

- x_4
- lisa-simpson
- $\text{sum}(x_3, \text{product}(\text{one}, x_5))$

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

- If t_1, \dots, t_k are terms (over \mathcal{S}) and $P \in \mathcal{P}$ is a k -ary predicate symbol, then the **atomic formula** (or the **atom**) $P(t_1, \dots, t_k)$ is a formula over \mathcal{S} .
- If t_1 and t_2 are terms (over \mathcal{S}), then the **identity** ($t_1 = t_2$) is a formula over \mathcal{S} .
- If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S} , then the **universal quantification** $\forall x \varphi$ and the **existential quantification** $\exists x \varphi$ are formulas over \mathcal{S} .

...

German: atomare Formel, Atom, Identität, Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

...

- If φ is a formula over \mathcal{S} , then so is its **negation** $\neg\varphi$.
- If φ and ψ are formulas over \mathcal{S} , then so are the **conjunction** $(\varphi \wedge \psi)$ and the **disjunction** $(\varphi \vee \psi)$.

German: Negation, Konjunktion, Disjunktion

Formulas: Examples

Examples: Arithmetic and Genealogy

- $\text{Positive}(x_2)$
- $\forall x (\neg \text{SquareNumber}(x) \vee \text{Positive}(x))$
- $\exists x_3 (\text{SquareNumber}(x_3) \wedge \neg \text{Positive}(x_3))$
- $\forall x (x = y)$
- $\forall x (\text{sum}(x, x) = \text{product}(x, \text{one}))$
- $\forall x \exists y (\text{sum}(x, y) = \text{zero})$
- $\forall x \exists y (\text{Parent}(y, x) \wedge \text{Female}(y))$

Terminology: The symbols \forall and \exists are called **quantifiers**.

German: Quantoren

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.

For example:

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall xyz \varphi$
- $\exists x \exists y \exists z \varphi \rightsquigarrow \exists xyz \varphi$
- $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.

For example:

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall xyz \varphi$
- $\exists x \exists y \exists z \varphi \rightsquigarrow \exists xyz \varphi$
- $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

placement of parentheses by convention:

- analogous to propositional logic
- quantifiers \forall and \exists bind more strongly than anything else.
- example: $\forall x P(x) \rightarrow Q(x)$ corresponds to $(\forall x P(x) \rightarrow Q(x))$,
not $\forall x (P(x) \rightarrow Q(x))$.

Exercise

$\mathcal{S} = \langle \{x, y, z\}, \{c\}, \{f, g, h\}, \{Q, R, S\} \rangle$ with
 $ar(f) = 3, ar(g) = ar(h) = 1, ar(Q) = 2, ar(R) = ar(S) = 1$

- $f(x, y)$
- $(g(x) = R(y))$
- $(g(x) = f(y, c, h(x)))$
- $(R(x) \wedge \forall x S(x))$
- $\forall c Q(c, x)$
- $(\forall x \exists y (g(x) = y) \vee (h(x) = c))$

Which expressions are syntactically correct formulas or terms for \mathcal{S} ?
What kind of term/formula?

Questions

Motivation
oo

Syntax
oooooooooooo

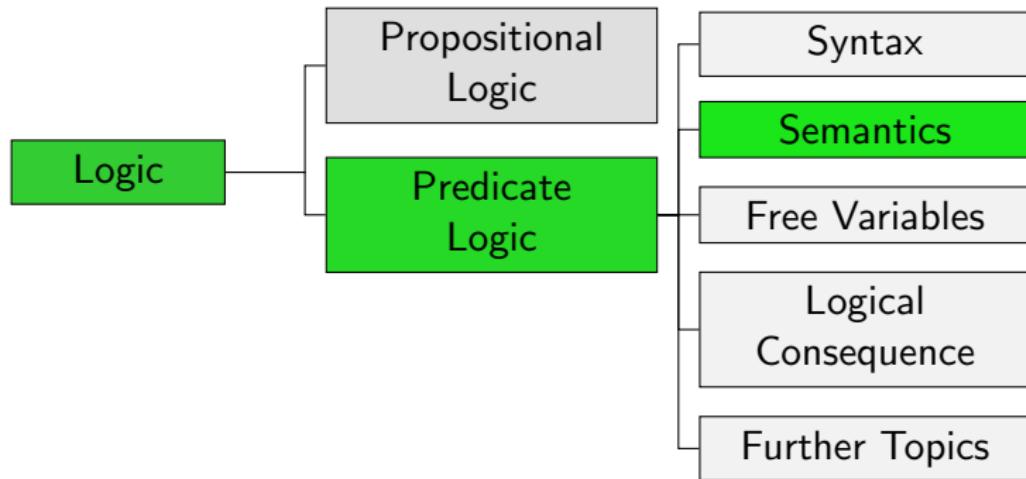
Semantics
●oooooooooooo

Free/Bound Variables
ooooooo

Summary
oo

Semantics of Predicate Logic

Logic: Overview



Semantics: Motivation

- interpretations in propositional logic:
truth assignments for the **propositional variables**
- There are no propositional variables in predicate logic.
- instead: interpretation determines meaning
of the **constant, function** and **predicate symbols**.
- meaning of **variable symbols** not determined by interpretation
but by separate **variable assignment**.

Interpretations and Variable Assignments

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An **interpretation** (for \mathcal{S}) is a pair $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ of:

- a non-empty set U called the **universe** and
- a function $\cdot^{\mathcal{I}}$ that assigns a meaning to the constant, function, and predicate symbols:
 - $c^{\mathcal{I}} \in U$ for constant symbols $c \in \mathcal{C}$
 - $f^{\mathcal{I}} : U^k \rightarrow U$ for k -ary function symbols $f \in \mathcal{F}$
 - $P^{\mathcal{I}} \subseteq U^k$ for k -ary predicate symbols $P \in \mathcal{P}$

A **variable assignment** (for \mathcal{S} and universe U)

is a function $\alpha : \mathcal{V} \rightarrow U$.

German: Interpretation, Variablenzuweisung, Universum (or Grundmenge)

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{V} = \{x, y, z\}$,
 $\mathcal{C} = \{\text{zero, one}\}$, $\mathcal{F} = \{\text{sum, product}\}$, $\mathcal{P} = \{\text{SquareNumber}\}$
 $ar(\text{sum}) = ar(\text{product}) = 2$, $ar(\text{SquareNumber}) = 1$

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{V} = \{x, y, z\}$,
 $\mathcal{C} = \{\text{zero, one}\}$, $\mathcal{F} = \{\text{sum, product}\}$, $\mathcal{P} = \{\text{SquareNumber}\}$
 $\text{ar}(\text{sum}) = \text{ar}(\text{product}) = 2$, $\text{ar}(\text{SquareNumber}) = 1$

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- $\text{zero}^{\mathcal{I}} = u_0$
- $\text{one}^{\mathcal{I}} = u_1$
- $\text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- $\text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- $\text{SquareNumber}^{\mathcal{I}} = \{u_0, u_1, u_2, u_4\}$

$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Semantics: Informally

Example: $(\forall x(\text{Block}(x) \rightarrow \text{Red}(x)) \wedge \text{Block}(a))$

“For all objects x : if x is a block, then x is red.

Also, the object called a is a block.”

- **Terms** are interpreted as **objects**.
- **Unary predicates** denote properties of objects
(to be a block, to be red, to be a square number, ...)
- **General predicates** denote relations between objects
(to be someone's child, to have a common divisor, ...)
- **Universally quantified** formulas (“ \forall ”) are true
if they hold for **every** object in the universe.
- **Existentially quantified** formulas (“ \exists ”) are true
if they hold for **at least one** object in the universe.

Interpretations of Terms

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} ,
and let α be a variable assignment for \mathcal{S} and universe U .

Let t be a term over \mathcal{S} .

The **interpretation of t** under \mathcal{I} and α , written as $t^{\mathcal{I}, \alpha}$,
is the element of the universe U defined as follows:

- If $t = x$ with $x \in \mathcal{V}$ (t is a **variable term**):
 $x^{\mathcal{I}, \alpha} = \alpha(x)$
- If $t = c$ with $c \in \mathcal{C}$ (t is a **constant term**):
 $c^{\mathcal{I}, \alpha} = c^{\mathcal{I}}$
- If $t = f(t_1, \dots, t_k)$ (t is a **function term**):
 $f(t_1, \dots, t_k)^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha})$

Interpretations of Terms: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{\text{zero, one}\}$, $\mathcal{F} = \{\text{sum, product}\}$,

$ar(\text{sum}) = ar(\text{product}) = 2$

Interpretations of Terms: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{\text{zero, one}\}$, $\mathcal{F} = \{\text{sum, product}\}$,
 $ar(\text{sum}) = ar(\text{product}) = 2$

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- $\text{zero}^{\mathcal{I}} = u_0$
- $\text{one}^{\mathcal{I}} = u_1$
- $\text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- $\text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$

$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Interpretations of Terms: Example (ctd.)

Example (ctd.)

- $\text{zero}^{\mathcal{I}, \alpha} =$
- $y^{\mathcal{I}, \alpha} =$
- $\text{sum}(x, y)^{\mathcal{I}, \alpha} =$
- $\text{product}(\text{one}, \text{sum}(x, \text{zero}))^{\mathcal{I}, \alpha} =$

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} ,
and let α be a variable assignment for \mathcal{S} and universe U .
We say that \mathcal{I} and α **satisfy** a predicate logic formula φ
(also: φ is **true** under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$,
according to the following inductive rules:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_k) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

$$\mathcal{I}, \alpha \models (t_1 = t_2) \quad \text{iff} \quad t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$$

$$\mathcal{I}, \alpha \models \neg \varphi \quad \text{iff} \quad \mathcal{I}, \alpha \not\models \varphi$$

$$\mathcal{I}, \alpha \models (\varphi \wedge \psi) \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models (\varphi \vee \psi) \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi$$

...

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

...

$\mathcal{I}, \alpha \models \forall x \varphi$ iff $\mathcal{I}, \alpha[x := u] \models \varphi$ for all $u \in U$

$\mathcal{I}, \alpha \models \exists x \varphi$ iff $\mathcal{I}, \alpha[x := u] \models \varphi$ for at least one $u \in U$

where $\alpha[x := u]$ is the same variable assignment as α ,
except that it maps variable x to the value u .

Formally:

$$(\alpha[x := u])(z) = \begin{cases} u & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

Semantics: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{a, b\}$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{\text{Block}, \text{Red}\}$,
 $ar(\text{Block}) = ar(\text{Red}) = 1$.

Semantics: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{a, b\}$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{\text{Block}, \text{Red}\}$, $ar(\text{Block}) = ar(\text{Red}) = 1$.

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- $U = \{u_1, u_2, u_3, u_4, u_5\}$
- $a^{\mathcal{I}} = u_1$
- $b^{\mathcal{I}} = u_3$
- $\text{Block}^{\mathcal{I}} = \{u_1, u_2\}$
- $\text{Red}^{\mathcal{I}} = \{u_1, u_2, u_3, u_5\}$

$\alpha = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_1\}$

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models (\text{Block}(b) \vee \neg \text{Block}(b))?$
- $\mathcal{I}, \alpha \models (\text{Block}(x) \rightarrow (\text{Block}(x) \vee \neg \text{Block}(y)))?$
- $\mathcal{I}, \alpha \models (\text{Block}(a) \wedge \text{Block}(b))?$
- $\mathcal{I}, \alpha \models \forall x (\text{Block}(x) \rightarrow \text{Red}(x))?$

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models (\text{Block}(b) \vee \neg \text{Block}(b))$?

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models (\text{Block}(x) \rightarrow (\text{Block}(x) \vee \neg \text{Block}(y)))$?

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models (\text{Block}(a) \wedge \text{Block}(b))?$

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models \forall x(\text{Block}(x) \rightarrow \text{Red}(x))$?

Questions

Motivation
oo

Syntax
oooooooooooo

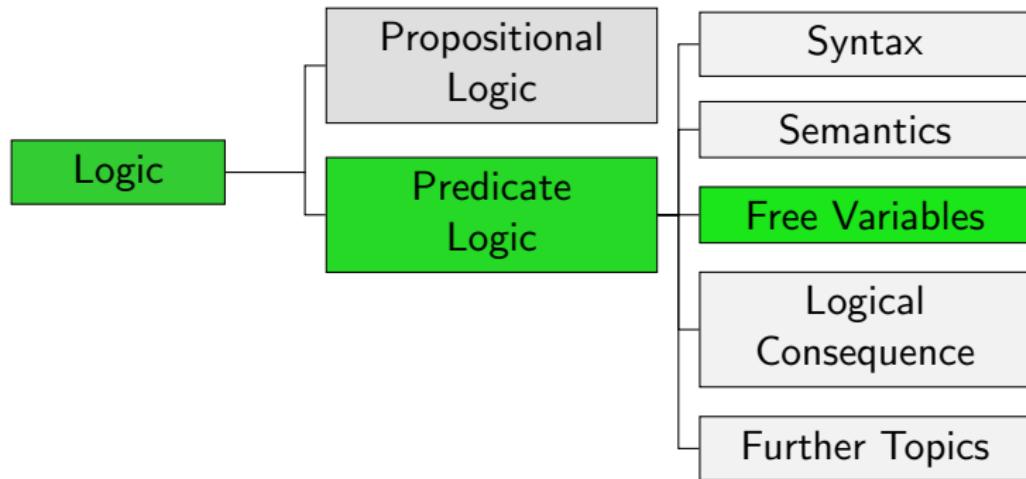
Semantics
oooooooooooo

Free/Bound Variables
●oooooooo

Summary
oo

Free and Bound Variables

Logic: Overview



Free and Bound Variables: Motivation

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$ and an interpretation \mathcal{I} .
- **Which parts of the definition of α are relevant** to decide whether $\mathcal{I}, \alpha \models (\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2))$?

Free and Bound Variables: Motivation

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$ and an interpretation \mathcal{I} .
- **Which parts of the definition of α are relevant** to decide whether $\mathcal{I}, \alpha \models (\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2))$?
- $\alpha(x_1), \alpha(x_5), \alpha(x_6), \alpha(x_7), \dots$ **are irrelevant** since those variable symbols occur in no formula.

Free and Bound Variables: Motivation

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$ and an interpretation \mathcal{I} .
- Which parts of the definition of α are relevant to decide whether $\mathcal{I}, \alpha \models (\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2))$?
- $\alpha(x_1), \alpha(x_5), \alpha(x_6), \alpha(x_7), \dots$ are irrelevant since those variable symbols occur in no formula.
- $\alpha(x_4)$ also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.

Free and Bound Variables: Motivation

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$ and an interpretation \mathcal{I} .
- Which parts of the definition of α are relevant to decide whether $\mathcal{I}, \alpha \models (\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2))$?
- $\alpha(x_1), \alpha(x_5), \alpha(x_6), \alpha(x_7), \dots$ are irrelevant since those variable symbols occur in no formula.
- $\alpha(x_4)$ also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.
- \rightsquigarrow only assignments for free variables x_2 and x_3 relevant

German: gebundene und freie Variablen

Variables of a Term

Definition (Variables of a Term)

Let t be a term. The set of **variables** that occur in t , written as $\text{var}(t)$, is defined as follows:

- $\text{var}(x) = \{x\}$
for variable symbols x
- $\text{var}(c) = \emptyset$
for constant symbols c
- $\text{var}(f(t_1, \dots, t_l)) = \text{var}(t_1) \cup \dots \cup \text{var}(t_l)$
for function terms

terminology: A term t with $\text{var}(t) = \emptyset$ is called **ground term**.

German: Grundterm

example: $\text{var}(\text{product}(x, \text{sum}(k, y))) =$

Free and Bound Variables of a Formula

Definition (Free Variables)

Let φ be a predicate logic formula. The set of **free variables** of φ , written as $\text{free}(\varphi)$, is defined as follows:

- $\text{free}(P(t_1, \dots, t_k)) = \text{var}(t_1) \cup \dots \cup \text{var}(t_k)$
- $\text{free}((t_1 = t_2)) = \text{var}(t_1) \cup \text{var}(t_2)$
- $\text{free}(\neg\varphi) = \text{free}(\varphi)$
- $\text{free}((\varphi \wedge \psi)) = \text{free}((\varphi \vee \psi)) = \text{free}(\varphi) \cup \text{free}(\psi)$
- $\text{free}(\forall x \varphi) = \text{free}(\exists x \varphi) = \text{free}(\varphi) \setminus \{x\}$

Example: $\text{free}((\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2)))$
=

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x) = \beta(x)$ for all free variables x of φ .

Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x) = \beta(x)$ for all free variables x of φ .

Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

In particular, α is **completely irrelevant** if $\text{free}(\varphi) = \emptyset$.

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x) = \beta(x)$ for all free variables x of φ .

Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

In particular, α is **completely irrelevant** if $\text{free}(\varphi) = \emptyset$.

Definition (Closed Formulas/Sentences)

A formula φ without free variables (i. e., $\text{free}(\varphi) = \emptyset$) is called **closed formula** or **sentence**.

If φ is a sentence, then we often write $\mathcal{I} \models \varphi$ instead of $\mathcal{I}, \alpha \models \varphi$, since the definition of α does not influence whether φ is true under \mathcal{I} and α or not.

Formulas with at least one free variable are called **open**.

German: geschlossene Formel/Satz, offene Formel

Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?

- $(\text{Block}(b) \vee \neg \text{Block}(b))$
- $(\text{Block}(x) \rightarrow (\text{Block}(x) \vee \neg \text{Block}(y)))$
- $(\text{Block}(a) \wedge \text{Block}(b))$
- $\forall x(\text{Block}(x) \rightarrow \text{Red}(x))$

Questions

Motivation
oo

Syntax
oooooooooooo

Semantics
oooooooooooo

Free/Bound Variables
ooooooo

Summary
●○

Summary

Summary

- **Predicate logic** is more expressive than propositional logic and allows statements over **objects** and their **properties**.
- Objects are described by **terms** that are built from variable, constant and function symbols.
- Properties and relations are described by **formulas** that are built from predicates, quantifiers and the usual logical operators.
- **Bound** vs. **free** variables: to decide if $\mathcal{I}, \alpha \models \varphi$, only free variables in α matter
- **Sentences** (closed formulas): formulas without free variables