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Limits of Propositional Logic

Cannot well be expressed in propositional logic:
m “Everyone who does the exercises passes the exam.”

m "If someone with administrator privileges presses ‘delete’,
all data is gone.”

m “Everyone has a mother.”

m “If someone is the father of some person,
the person is his child.”
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Limits of Propositional Logic

Cannot well be expressed in propositional logic:
m “Everyone who does the exercises passes the exam.”
m "If someone with administrator privileges presses ‘delete’,
all data is gone.”
m “Everyone has a mother.”

m “If someone is the father of some person,
the person is his child.”

> need more expressive logic
~ predicate logic

German: Pradikatenlogik
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Syntax of Predicate Logic
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Syntax Building Blocks

m Signatures define allowed symbols.
analogy: variable set A in propositional logic

m Terms are associated with objects by the semantics.
no analogy in propositional logic

m Formulas are associated with truth values (true or false)
by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel
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Signatures: Definition

Definition (Signature)
A signature (of predicate logic) is a 4-tuple S = (V,C, F,P)
consisting of the following four disjoint sets:

m a finite or countable set V of variable symbols

m a finite or countable set C of constant symbols

m a finite or countable set F of function symbols

m a finite or countable set P of predicate symbols
(or relation symbols)

Every function symbol f € F and predicate symbol P € P
has an associated arity ar(f), ar(P) € Ny (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Pradikat- und
Relationssymbole; Stelligkeit
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Signatures: Terminology and Conventions

terminology:
m k-ary (function or predicate) symbol:
symbol s with arity ar(s) = k.
m also: unary, binary, ternary

German: k-stellig, unar, binar, ternar

conventions (in this lecture):

m variable symbols written in jtalics,
other symbols upright.

m predicate symbols begin with capital letter,
other symbols with lower-case letters



Motivation Syntax Se 3 1 Variables Summary

[e]e]e]e]e] lele]ele]e]e]

Signatures: Examples

Example: Arithmetic

u V:{X,y,Z,X]_,XQ,X?,,...}

m C = {zero,one}
m F = {sum, product}
m P = {Positive, SquareNumber}
ar(sum) = ar(product) = 2, ar(Positive) = ar(SquareNumber) =1

v
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Signatures: Examples

Example: Genealogy

u V:{X,y,Z,X]_,XQ,X?,,...}

m C = {roger-federer, lisa-simpson }

m F=10

m P = {Female, Male, Parent}
ar(Female) = ar(Male) = 1, ar(Parent) = 2
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Terms: Definition

Definition (Term)

Let S = (V,C, F,P) be a signature.
A term (over S) is inductively constructed
according to the following rules:

m Every variable symbol v € V is a term.
m Every constant symbol c € C is a term.

m If t,..., t, are terms and f € F is a function symbol
with arity k, then f(t1, ..., tx) is a term.

German: Term
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Terms: Definition

Definition (Term)

Let S = (V,C, F,P) be a signature.
A term (over S) is inductively constructed
according to the following rules:

m Every variable symbol v € V is a term.
m Every constant symbol c € C is a term.

m If t,..., t, are terms and f € F is a function symbol
with arity k, then f(t1, ..., tx) is a term.

German: Term

examples:
H Xy
m lisa-simpson

m sum(xz, product(one, xs))
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Formulas: Definition

Definition (Formula)

For a signature S = (V,C, F,P) the set of predicate logic formulas
(over S) is inductively defined as follows:

m If t1,..., tx are terms (over §) and P € P is a k-ary predicate
symbol, then the atomic formula (or the atom) P(t1,. .., tx)
is a formula over S.

m If t; and tp are terms (over §), then the identity (t; = t»)
is a formula over S.

m If x € V is a variable symbol and ¢ a formula over S,

then the universal quantification Vx ¢
and the existential quantification Ix ¢ are formulas over S.

German: atomare Formel, Atom, Identitat, Allquantifizierung,
Existenzquantifizierung
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Formulas: Definition

Definition (Formula)

For a signature S = (V,C, F, P) the set of predicate logic formulas
(over S) is inductively defined as follows:

m If ¢ is a formula over S, then so is its negation —.

m If ¢ and ¢ are formulas over S, then so are
the conjunction (¢ A 1) and the disjunction (¢ V 9).

German: Negation, Konjunktion, Disjunktion
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Formulas: Examples

Examples: Arithmetic and Genealogy

m Positive(xz)
m Vx (—SquareNumber(x) V Positive(x))
m Jx3 (SquareNumber(x3) A —Positive(x3))

mVx(x=y)

m Vx (sum(x, x) = product(x, one))
m Vx3dy (sum(x, y) = zero)

m Vx3Jy (Parent(y, x) A Female(y))

Terminology: The symbols ¥V and 3 are called quantifiers.

German: Quantoren
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Abbreviations and Placement of Parentheses by Convention

abbreviations:
m (¢ — 1) is an abbreviation for (- V 1)).
m (¢ <> 1)) is an abbreviation for ((¢ — V) A (¥ — ¢)).

m Sequences of the same quantifier can be abbreviated.
For example:
m VxVyVzp ~ Vxyz o
B dxdydzp ~ Ixyzp
B Yw3ax3yVz o ~» VYwIxyVzp
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Abbreviations and Placement of Parentheses by Convention

abbreviations:
m (¢ — 1) is an abbreviation for (- V 1)).
m (¢ <> 1)) is an abbreviation for ((¢ — V) A (¥ — ¢)).

m Sequences of the same quantifier can be abbreviated.
For example:

m VxVyVzp ~ Vxyz p
B dxdydzp ~ Ixyzp
B Yw3ax3yVz o ~» VYwIxyVzp
placement of parentheses by convention:
m analogous to propositional logic
m quantifiers ¥V and 3 bind more strongly than anything else.

m example: Vx P(x) — Q(x) corresponds to (Vx P(x) — Q(x)),
not Vx (P(x) — Q(x)).
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Exercise

S ={x,y,z},{c},{f,g,h},{Q,R,S}) with
ar(f) =3,ar(g) = ar(h) = 1,ar(Q) = 2,ar(R) = ar(S) = 1
= f(x,y)
= (g(x) =R(y))
= (g(x) =f(y,c,h(x)))
m (R(x) AVxS(x))
m Ve Q(c, x)
= (B3 (g(x) = y) V (h(x) = )

Which expressions are syntactically correct formulas or terms for §7
What kind of term/formula?
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Semantics of Predicate Logic
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Semantics: Motivation

m interpretations in propositional logic:
truth assignments for the propositional variables

m There are no propositional variables in predicate logic.

m instead: interpretation determines meaning
of the constant, function and predicate symbols.

m meaning of variable symbols not determined by interpretation
but by separate variable assignment.
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Interpretations and Variable Assignments

Let S = (V,C, F,P) be a signature.

Definition (Interpretation, Variable Assignment)
An interpretation (for S) is a pair Z = (U, -T) of:
m a non-empty set U called the universe and

m a function -Z that assigns a meaning to the constant,
function, and predicate symbols:
m cZ € U for constant symbols c € C
m £ : UK — U for k-ary function symbols f € F
m PZ C U* for k-ary predicate symbols P € P

A variable assignment (for S and universe U)
is a function o : V — U.

v

German: Interpretation, Variablenzuweisung, Universum (or Grundmenge)
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Interpretations and Variable Assignments: Example

Semantics

Example

signature: S = (V,C, F,P) with V = {x,y, z},

C = {zero,one}, F = {sum, product}, P = {SquareNumber}
ar(sum) = ar(product) = 2, ar(SquareNumber) =1
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Interpretations and Variable Assignments: Example

Example
signature: S = (V,C, F,P) with V = {x,y, z},

C = {zero,one}, F = {sum, product}, P = {SquareNumber}

ar(sum) = ar(product) = 2, ar(SquareNumber) =1

T = (U, T) with
m U= {uw,u1,un,us,us, us, U}
m zero? = u
m onel =iy
m sum?Z(u;, uj) = U(i+j) mod 7 for all i, j € {0,...,6}
m product? (u;, uj) = U(ijy mod 7 for all i,j € {0, ...,6}

SquareNumber? = {up, uy, ua, ug}

a={x+— us,y— U5,z Up}

Summary




Motivation

Semantics: Informally

Semantics Sound Variables
00000@0000000 ofo 00

Example: (Vx(Block(x) — Red(x)) A Block(a))
“For all objects x: if x is a block, then x is red.
Also, the object called a is a block.”

Terms are interpreted as objects.

Unary predicates denote properties of objects
(to be a block, to be red, to be a square number, ...

General predicates denote relations between objects
(to be someone’s child, to have a common divisor, ..

Universally quantified formulas (“V") are true
if they hold for every object in the universe.

Existentially quantified formulas (“3") are true
if they hold for at least one object in the universe.

)
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Interpretations of Terms

Let S = (V,C, F,P) be a signature.

Definition (Interpretation of a Term)

Let Z = (U, 1) be an interpretation for S,
and let o be a variable assignment for S and universe U.

Let t be a term over S.
The interpretation of t under Z and «, written as
is the element of the universe U defined as follows:
m If t = x with x € V (t is a variable term):
xT = a(x)
m If t = c with c € C (¢ is a constant term):

CI,a — CI

tI,oz’

mft =1(t1,...,t) (ti i5a function term):

f(tl,...,t) fI( fa)
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Interpretations of Terms: Example

Example
signature: S = (V,C, F,P)
with V = {x,y, z}, C = {zero,one}, F = {sum, product},
ar(sum) = ar(product) = 2
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Interpretations of Terms: Example

Example

signature: S = (V,C, F,P)

with V = {x,y, z}, C = {zero,one}, F = {sum, product},
ar(sum) = ar(product) = 2

T = (U,-1) with
m U= {uwp,u1,un,us, U, us, U}
m zero? = 1
m onel =iy
m sum?®(u;, u) = U(i+j) mod 7 for all i, j € {0,...,6}

product? (u;, Uj) = U(i.jy mod 7 for all i,j € {0,...,6}

a={x+— us,y— U5,z Up}
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Interpretations of Terms: Example (ctd.)

Example (ctd.)
Lo

B Zero

- yI,a —

m sum(x,y)b =

m product(one, sum(x, zero))>* =
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Semantics of Predicate Logic Formulas

Let S = (V,C, F,P) be a signature.

Definition (Formula is Satisfied or True)

Let Z = (U,-T) be an interpretation for S,

and let « be a variable assignment for S and universe U.
We say that Z and « satisfy a predicate logic formula ¢
(also: ¢ is true under Z and «), written: Z, o = ¢,
according to the following inductive rules:

T,a b= P(ty,...,t) iff (6%, 0% e P?
Lok (b =t) iffth® ="
T,aE-p ffZalp
Z,aE(pANY) ffZ,aEpand Z,a =9
T,aE(pVy) ffT,aEporZ,alEvy

German: Z und « erfiillen ¢ (also: ¢ ist wahr unter Z und «)
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Semantics of Predicate Logic Formulas

Let S = (V,C, F,P) be a signature.

Definition (Formula is Satisfied or True)

Z,a =% iff Z,alx:=u] =g forallue U
Z,a = 3Ixp iff Z,a[x := u] = ¢ for at least one u € U

where «a[x := u] is the same variable assignment as «,
except that it maps variable x to the value w.
Formally:

(alx = u])(z) = {

u if z=x

a(z) ifz#x
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Semantics: Example

Example

signature: S = (V,C, F,P)

with V = {x,y,z}, C = {a,b}, F =0, P = {Block, Red},
ar(Block) = ar(Red) = 1.
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Semantics: Example

Example

signature: S = (V,C, F,P)
with V = {x,y,z}, C = {a,b}, F =0, P = {Block, Red},
ar(Block) = ar(Red) = 1.

T = (U, T with
m U= {wu,uw,us,us, us}
] aI =
m bl =us

m Block? = {u1, up}

]

RedI {U]_,UQ,U3,U5}

a={x—u,y— uw,z—u}
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Semantics: Example (ctd.)

Example (ctd.)

Questions:
m Z, o |= (Block(b) v —Block(b))?
m Z, o |= (Block(x) — (Block(x) V =Block(y)))?
m Z, o |= (Block(a) A Block(b))?
m Z, o = Vx(Block(x) — Red(x))?
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Semantics: Example (ctd.)

Example (ctd.)

Questions:
® Z,a = (Block(b) V —Block(b))?
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Semantics: Example (ctd.)

Example (ctd.)

Questions:
® Z,a = (Block(x) — (Block(x) vV =Block(y)))?
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Semantics: Example (ctd.)

Example (ctd.)

Questions:
® Z,a = (Block(a) A Block(b))?
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Semantics: Example (ctd.)

Example (ctd.)

Questions:
B Z,a = Vx(Block(x) — Red(x))?
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Free and Bound Variables
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Free and Bound Variables: Motivation

Question:
m Consider a signature with variable symbols {x1, x2, x3, ... }
and an interpretation Z.

m Which parts of the definition of « are relevant to decide
whether Z, a |= (Vxa(R(xa, x2) V (f(x3) = xa)) V Ix35(x3, %2))?
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Free and Bound Variables: Motivation

Question:
m Consider a signature with variable symbols {x1, x2, x3, ... }
and an interpretation Z.
m Which parts of the definition of « are relevant to decide
whether Z, a |= (Vxa(R(xa, x2) V (f(x3) = xa)) V Ix35(x3, %2))?
m a(x1), a(xs), a(xe), a(x7), ...are irrelevant
since those variable symbols occur in no formula.
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Free and Bound Variables: Motivation

Question:
m Consider a signature with variable symbols {x1, x2, x3, ... }
and an interpretation Z.
m Which parts of the definition of « are relevant to decide
whether Z, a |= (Vxa(R(xa, x2) V (f(x3) = xa)) V Ix35(x3, %2))?
m a(x1), a(xs), a(xe), a(x7), ...are irrelevant
since those variable symbols occur in no formula.

B a(xs) also is irrelevant: the variable occurs in the formula,
but all occurrences are bound by a surrounding quantifier.
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Free and Bound Variables: Motivation

Question:

m Consider a signature with variable symbols {x1, x2, x3, ... }
and an interpretation Z.

m Which parts of the definition of « are relevant to decide
whether Z, a |= (Vxa(R(xa, x2) V (f(x3) = xa)) V Ix35(x3, %2))?

m a(x1), a(xs), a(xe), a(x7), ...are irrelevant
since those variable symbols occur in no formula.

m «(xq) also is irrelevant: the variable occurs in the formula,
but all occurrences are bound by a surrounding quantifier.

m ~~ only assignments for free variables x; and x3 relevant

German: gebundene und freie Variablen
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Variables of a Term

Definition (Variables of a Term)

Let t be a term. The set of variables that occur in t,
written as var(t), is defined as follows:

m var(x) = {x}
for variable symbols x
m var(c) =0

for constant symbols ¢

m var(f(ty,..., ) = var(ty) U--- Uvar(t))
for function terms

terminology: A term t with var(t) = () is called ground term.
German: Grundterm

example: var(product(x,sum(k, y))) =
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Free and Bound Variables of a Formula

Definition (Free Variables)

Let ¢ be a predicate logic formula. The set of free variables of ¢,
written as free(y), is defined as follows:

[ | free(P(tl, ey tk)) = var(tl) J---uJ var(tk)
[ | free((t1 = tg)) = var(tl) U var(tg)
m free(—p) = free(p)

m free((p A ) = free((¢ V ) = free(yp) U free(t))
m free(Vx @) = free(3x @) = free(p) \ {x}

Example: free((Vxa(R(xa,x2) V (f(x3) = xa)) V 3x35(x3, x2)))



Closed Formulas/Sentences

Note: Let ¢ be a formula and let a and 3 variable assignments
with a(x) = B(x) for all free variables x of .

Then Z,a E ¢ iff Z,8 = .
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Closed Formulas/Sentences

Note: Let ¢ be a formula and let a and 3 variable assignments
with a(x) = B(x) for all free variables x of .

Then Z,a E ¢ iff Z,8 = .

In particular, « is completely irrelevant if free(y) = (0.
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Closed Formulas/Sentences

Note: Let ¢ be a formula and let o and 3 variable assignments
with a(x) = B(x) for all free variables x of .

Then Z,a E ¢ iff Z,8 = .

In particular, « is completely irrelevant if free(y) = (0.

Definition (Closed Formulas/Sentences)

A formula ¢ without free variables (i.e., free() = 0)
is called closed formula or sentence.

If ¢ is a sentence, then we often write Z = ¢
instead of Z, a = ¢, since the definition of « does not influence
whether ¢ is true under Z and « or not.

Formulas with at least one free variable are called open.

German: geschlossene Formel/Satz, offene Formel
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Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?
m (Block(b) vV —Block(b))
m (Block(x) — (Block(x) v —Block(y)))
m (Block(a) A Block(b))
m Vx(Block(x) — Red(x))
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Questions?
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Summary

m Predicate logic is more expressive than propositional logic
and allows statements over objects and their properties.

m Objects are described by terms that are built
from variable, constant and function symbols.

m Properties and relations are described by formulas
that are built from predicates, quantifiers
and the usual logical operators.

m Bound vs. free variables: to decide if Z, a |= ¢, only free
variables in o matter

m Sentences (closed formulas): formulas without free variables
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