

Theory of Computer Science

B3. Propositional Logic III

Gabriele Röger

University of Basel

February 26, 2020

Theory of Computer Science

February 26, 2020 — B3. Propositional Logic III

B3.1 Logical Consequences

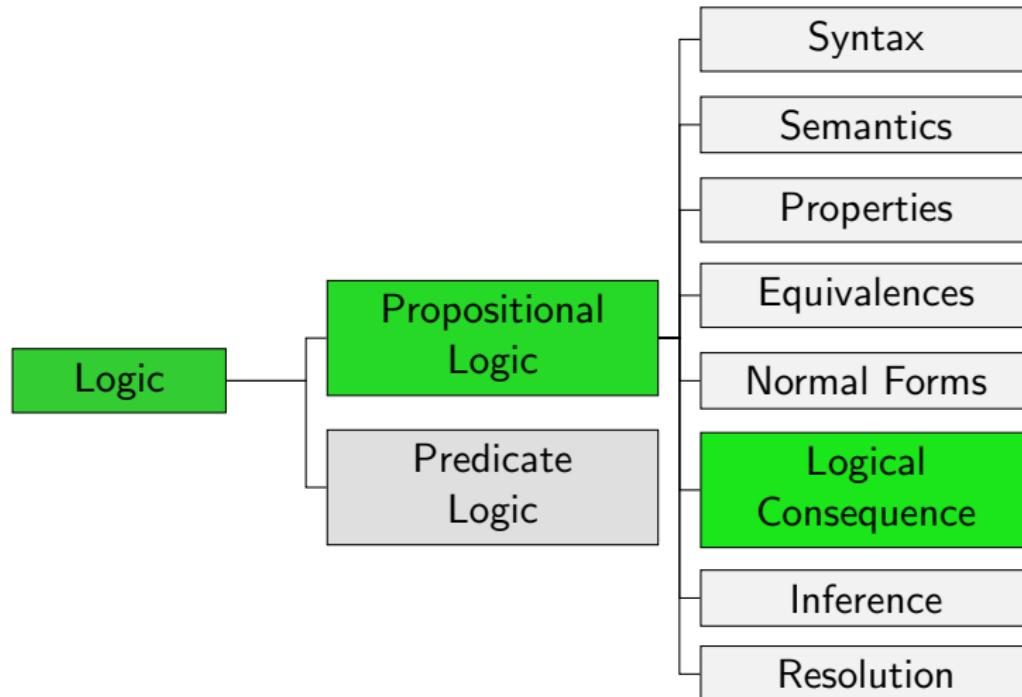
B3.2 Inference

B3.3 Resolution Calculus

B3.4 Summary

B3.1 Logical Consequences

Logic: Overview



Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

$$\begin{aligned} \text{KB} = \{ & (\neg \text{DrinkBeer} \rightarrow \text{EatFish}), \\ & ((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream}), \\ & ((\text{EatIceCream} \vee \neg \text{DrinkBeer}) \rightarrow \neg \text{EatFish}) \} \end{aligned}$$

Exercise from U. Schöning: Logik für Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a **knowledge base** over A ,
i. e., a set of propositional formulas over A .

A truth assignment \mathcal{I} for A is a **model for KB** (written: $\mathcal{I} \models \text{KB}$)
if \mathcal{I} is a **model for every formula** $\varphi \in \text{KB}$.

German: Wissensbasis, Modell

Properties of Sets of Formulas

A knowledge base KB is

- ▶ **satisfiable** if KB has at least one model
- ▶ **unsatisfiable** if KB is not satisfiable
- ▶ **valid** (or a **tautology**) if every interpretation is a model for KB
- ▶ **falsifiable** if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $KB = \{(A \wedge \neg B), \neg(B \vee A)\}$ have?

KB is **unsatisfiable**:

For every model \mathcal{I} with $\mathcal{I} \models (A \wedge \neg B)$ we have $\mathcal{I}(A) = 1$.
This means $\mathcal{I} \models (B \vee A)$ and thus $\mathcal{I} \not\models \neg(B \vee A)$.

This directly implies that KB is **falsifiable, not satisfiable** and **no tautology**.

Example II

Which of the properties does

$KB = \{(\neg \text{DrinkBeer} \rightarrow \text{EatFish}),$
 $((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream}),$
 $((\text{EatIceCream} \vee \neg \text{DrinkBeer}) \rightarrow \neg \text{EatFish})\}$ have?

Logical Consequences: Motivation

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker
Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as $\text{KB} \models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB ,
 φ is a logical consequence of KB

German: KB impliziert φ logisch, φ folgt logisch aus KB ,
 φ ist logische Konsequenz von KB

Attention: the symbol \models is “overloaded”: $\text{KB} \models \varphi$ vs. $\mathcal{I} \models \varphi$.

What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

Let $\varphi = \text{DrinkBeer}$ and

$$\begin{aligned} \text{KB} = \{ & (\neg \text{DrinkBeer} \rightarrow \text{EatFish}), \\ & ((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream}), \\ & ((\text{EatIceCream} \vee \neg \text{DrinkBeer}) \rightarrow \neg \text{EatFish}) \}. \end{aligned}$$

Show: $\text{KB} \models \varphi$

Proof sketch.

Proof by contradiction: assume $\mathcal{I} \models \text{KB}$, but $\mathcal{I} \not\models \text{DrinkBeer}$.

Then it follows that $\mathcal{I} \models \neg \text{DrinkBeer}$.

Because \mathcal{I} is a model of KB, we also have

$\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$ and thus $\mathcal{I} \models \text{EatFish}$. (Why?)

With an analogous argumentation starting from

$\mathcal{I} \models ((\text{EatIceCream} \vee \neg \text{DrinkBeer}) \rightarrow \neg \text{EatFish})$

we get $\mathcal{I} \models \neg \text{EatFish}$ and thus $\mathcal{I} \not\models \text{EatFish}$. \rightsquigarrow Contradiction!

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

$$KB \cup \{\varphi\} \models \psi \text{ iff } KB \models (\varphi \rightarrow \psi)$$

German: Deduktionssatz

Theorem (Contraposition Theorem)

$$KB \cup \{\varphi\} \models \neg\psi \text{ iff } KB \cup \{\psi\} \models \neg\varphi$$

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

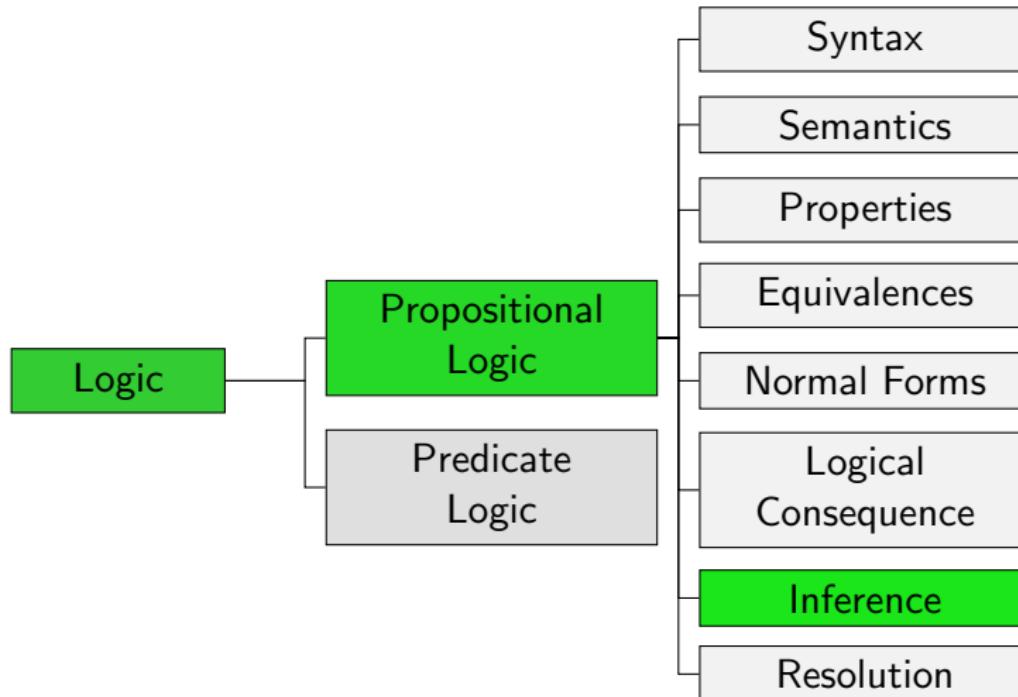
$$KB \cup \{\varphi\} \text{ is unsatisfiable iff } KB \models \neg\varphi$$

German: Widerlegungssatz

(without proof)

B3.2 Inference

Logic: Overview



Inference: Motivation

- ▶ up to now: proof of logical consequence with semantic arguments
- ▶ no general algorithm
- ▶ solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.
- ▶ advantage: mechanical method can easily be implemented as an algorithm

Inference Rules

- ▶ Inference rules have the form

$$\frac{\varphi_1, \dots, \varphi_k}{\psi}.$$

- ▶ Meaning: "Every model of $\varphi_1, \dots, \varphi_k$ is a model of ψ ."
- ▶ An **axiom** is an inference rule with $k = 0$.
- ▶ A set of syntactic inference rules is called a **calculus** or **proof system**.

German: Inferenzregel, Axiom, Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens
$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Modus tollens
$$\frac{\neg\psi, (\varphi \rightarrow \psi)}{\neg\varphi}$$

\wedge -elimination
$$\frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$$

\wedge -introduction
$$\frac{\varphi, \psi}{(\varphi \wedge \psi)}$$

\vee -introduction
$$\frac{\varphi}{(\varphi \vee \psi)}$$

\leftrightarrow -elimination
$$\frac{(\varphi \leftrightarrow \psi)}{(\varphi \rightarrow \psi)} \quad \frac{(\varphi \leftrightarrow \psi)}{(\psi \rightarrow \varphi)}$$

Derivation

Definition (Derivation)

A **derivation** or **proof** of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \dots, ψ_k with

- ▶ $\psi_k = \varphi$ and
- ▶ for all $i \in \{1, \dots, k\}$:
 - ▶ $\psi_i \in \text{KB}$, or
 - ▶ ψ_i is the result of the application of an inference rule to elements from $\{\psi_1, \dots, \psi_{i-1}\}$.

German: Ableitung, Beweis

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)
- ⑤ R (1, 4, Modus ponens)
- ⑥ $(Q \wedge R)$ (3, 5, \wedge -introduction)
- ⑦ $((Q \wedge R) \rightarrow S)$ (KB)
- ⑧ S (6, 7, Modus ponens)
- ⑨ $(S \wedge R)$ (8, 5, \wedge -introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $\text{KB} \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C .

(If calculus C is clear from context, also only $\text{KB} \vdash \varphi$.)

A calculus C is **correct** if for all KB and φ

$\text{KB} \vdash_C \varphi$ implies $\text{KB} \models \varphi$.

A calculus C is **complete** if for all KB and φ

$\text{KB} \models \varphi$ implies $\text{KB} \vdash_C \varphi$.

Consider calculus C , consisting of the derivation rules seen earlier.

Question: Is C correct?

Question: Is C complete?

German: korrekt, vollständig

Refutation-completeness

- ▶ We obviously want **correct** calculi.
- ▶ Do we always need a **complete** calculus?
- ▶ **Contradiction theorem:**
 $\text{KB} \cup \{\varphi\}$ is unsatisfiable iff $\text{KB} \models \neg\varphi$
- ▶ This implies that $\text{KB} \models \varphi$ iff $\text{KB} \cup \{\neg\varphi\}$ is unsatisfiable.
- ▶ We can reduce the **general** implication problem to a **test of unsatisfiability**.
- ▶ In calculi, we use the special symbol \Box for (provably) unsatisfiable formulas.

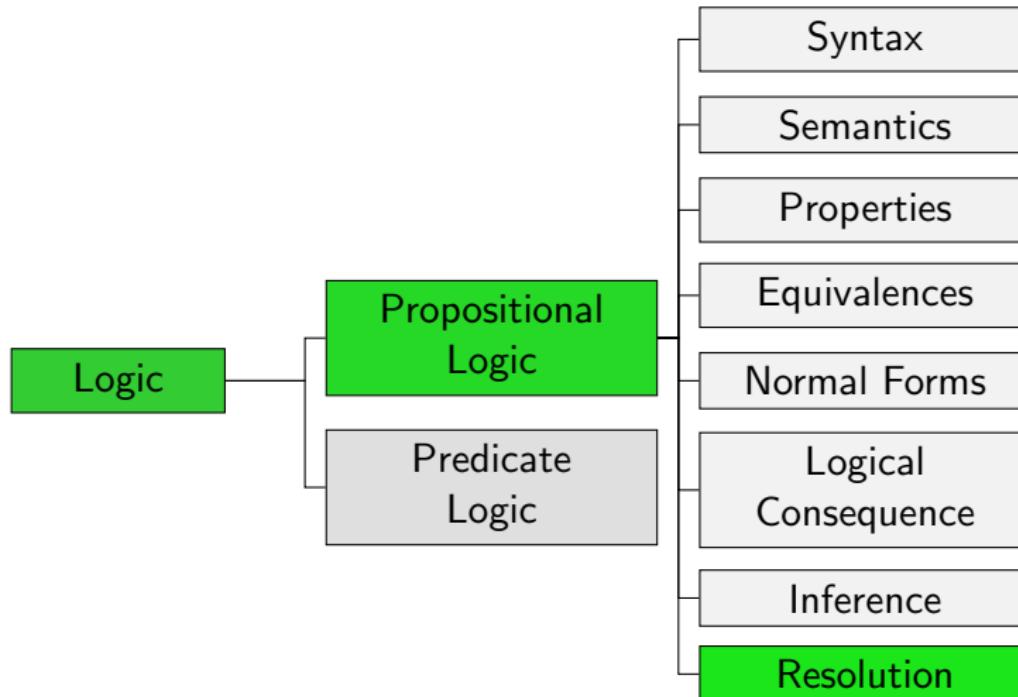
Definition (Refutation-Completeness)

A calculus C is **refutation-complete** if it holds for all unsatisfiable KB that $\text{KB} \vdash_C \Box$.

German: widerlegungsvollständig

B3.3 Resolution Calculus

Logic: Overview



Resolution: Idea

- ▶ Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- ▶ Every knowledge base can be transformed into equivalent formulas in CNF.
 - ▶ Transformation can require exponential time.
 - ▶ Alternative: efficient transformation in **equisatisfiable** formulas (not part of this course)
- ▶ Show $\text{KB} \models \varphi$ by derivability of $\text{KB} \cup \{\neg\varphi\} \vdash_R \square$ with **resolution calculus R** .
- ▶ Resolution can require exponential time.
- ▶ This is probably the case for **all** refutation-complete proof methods. ↵ complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- ▶ Formula in CNF as **set of clauses**
(due to commutativity, idempotence, associativity of \wedge)
- ▶ Set of formulas as **set of clauses**
- ▶ Clause as **set of literals**
(due to commutativity, idempotence, associativity of \vee)
- ▶ Knowledge base as **set of sets of literals**

Example

$$\text{KB} = \{(P \vee P), ((\neg P \vee Q) \wedge (\neg P \vee R) \wedge (\neg P \vee Q) \wedge R), \\ ((\neg Q \vee \neg R \vee S) \wedge P)\}$$

as set of clauses:

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\}\}$$

Resolution Rule

The **resolution calculus** consists of a single rule, called **resolution rule**:

$$\frac{C_1 \cup \{L\}, \ C_2 \cup \{\neg L\}}{C_1 \cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \square instead of $\{\}$.

Terminology:

- ▶ L and $\neg L$ are the **resolution literals**,
- ▶ $C_1 \cup \{L\}$ and $C_2 \cup \{\neg L\}$ are the **parent clauses**, and
- ▶ $C_1 \cup C_2$ is the **resolvent**.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A **proof by resolution** of a clause D from a knowledge base Δ is a sequence of clauses C_1, \dots, C_n with

- ▶ $C_n = D$ and
- ▶ for all $i \in \{1, \dots, n\}$:
 - ▶ $C_i \in \Delta$, or
 - ▶ C_i is resolvent of two clauses from $\{C_1, \dots, C_{i-1}\}$.

If there is a proof of D by resolution from Δ , we say that D can be **derived with resolution** from Δ and write $\Delta \vdash_R D$.

Remark: Resolution is a **correct, refutation-complete**,
but **incomplete** calculus.

German: Resolutionsbeweis, “mit Resolution aus Δ abgeleitet”

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $\text{KB} = \{P, (P \rightarrow (Q \wedge R))\}$.

Show with resolution that $\text{KB} \models (R \vee S)$.

Three steps:

- ① Reduce logical consequence to unsatisfiability.
- ② Transform knowledge base into clause form (CNF).
- ③ Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

$\text{KB} \models (R \vee S)$ iff $\text{KB} \cup \{\neg(R \vee S)\}$ is unsatisfiable.

Thus, consider

$$\text{KB}' = \text{KB} \cup \{\neg(R \vee S)\} = \{P, (P \rightarrow (Q \wedge R)), \neg(R \vee S)\}.$$

...

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$KB' = \{P, (P \rightarrow (Q \wedge R)), \neg(R \vee S)\}$.

Step 2: Transform knowledge base into clause form (CNF).

► P

~~> **Clauses:** $\{P\}$

► $P \rightarrow (Q \wedge R) \equiv (\neg P \vee (Q \wedge R)) \equiv ((\neg P \vee Q) \wedge (\neg P \vee R))$

~~> **Clauses:** $\{\neg P, Q\}, \{\neg P, R\}$

► $\neg(R \vee S) \equiv (\neg R \wedge \neg S)$

~~> **Clauses:** $\{\neg R\}, \{\neg S\}$

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$$

...

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$$

Step 3: Derive empty clause \square with resolution.

- ▶ $C_1 = \{P\}$ (from Δ)
- ▶ $C_2 = \{\neg P, Q\}$ (from Δ)
- ▶ $C_3 = \{\neg P, R\}$ (from Δ)
- ▶ $C_4 = \{\neg R\}$ (from Δ)
- ▶ $C_5 = \{Q\}$ (from C_1 und C_2)
- ▶ $C_6 = \{\neg P\}$ (from C_3 und C_4)
- ▶ $C_7 = \square$ (from C_1 und C_6)

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution

Show with resolution, that $\text{KB} \models \text{DrinkBeer}$, where

$$\text{KB} = \{(\neg \text{DrinkBeer} \rightarrow \text{EatFish}), \\ ((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream}), \\ ((\text{EatIceCream} \vee \neg \text{DrinkBeer}) \rightarrow \neg \text{EatFish})\}.$$

B3.4 Summary

Summary

- ▶ **knowledge base**: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- ▶ **logical consequence** $KB \models \varphi$ means that φ is true whenever (= in all models where) KB is true
- ▶ A **logical consequence** $KB \models \varphi$ allows to conclude that KB implies φ based on the semantics.
- ▶ A correct **calculus** supports such conclusions on the basis of **purely syntactical derivations** $KB \vdash \varphi$.
- ▶ **Complete calculi** often not necessary: For many questions **refutation-completeness** is sufficient.
- ▶ The **resolution calculus** is **correct** and **refutation-complete**.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- ▶ **resolution strategies** to make resolution as efficient as possible in practice,
- ▶ other proof systems, as for example **tableaux proofs**,
- ▶ algorithms for **model construction**, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
→ Foundations of AI course