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The Story So Far

propositional logic based on atomic propositions
syntax: which formulas are well-formed?

semantics: when is a formula true?

interpretations: important basis of semantics
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Reminder: Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

m Every atom a € A is a propositional formula over A.

m If ¢ is a propositional formula over A,
then so is its negation —.

m If ¢ and ¢ are propositional formulas over A,
then so is the conjunction (¢ A ).

m If ¢ and v are propositional formulas over A,
then so is the disjunction (¢ V ).

The implication (¢ — 1) is an abbreviation for (= V 7).
The biconditional (¢ <> v) is an abbrev. for ((¢ — ¥) A (Y — ©)).
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Reminder: Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function 7 : A — {0, 1}.

A propositional formula ¢ (over A) holds under Z
(written as Z = ¢) according to the following definition:

TkEa iff Z(a)=1 (for a € A)
ZE-p iff notZ|=o

IE(enNyY) iff TEepandIEy

Ik (pevy) iff ITkpolldy
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Logic: Overview
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—I Semantics |

~| Equivalences |

—| Normal Forms |

Predicate Logical
Logic Consequence
—I Inference |
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Properties of Propositional Formulas

A propositional formula ¢ is
m satisfiable if ¢ has at least one model
m unsatisfiable if ¢ is not satisfiable
m valid (or a tautology) if ¢ is true under every interpretation

m falsifiable if ¢ is no tautology

German: erfiillbar, unerfiillbar, giiltig/eine Tautologie, falsifizierbar
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Exercise

Which properties do the following formulas have?
Satisfiable? Unsatisfiable? Valid? Falsifiable?

] (A/\—|A)

] (A\/—|A)

a (AN (=B VC))

= (AA=B)V (=AA B))
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Examples

How can we show that a formula has one of these properties?
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Examples

How can we show that a formula has one of these properties?
m Show that (A A B) is satisfiable.
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Examples

How can we show that a formula has one of these properties?

m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))
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Examples

How can we show that a formula has one of these properties?

m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))

m Show that (A A B) is falsifiable.
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Examples

How can we show that a formula has one of these properties?
m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))

m Show that (A A B) is falsifiable.
7 ={A— 0,B+ 1} (4 simple proof that Z [= (A A B))
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Examples

How can we show that a formula has one of these properties?

m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))

m Show that (A A B) is falsifiable.
7 ={A— 0,B+ 1} (4 simple proof that Z [= (A A B))

m Show that (A A B) is not valid.
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Examples

How can we show that a formula has one of these properties?
m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))

m Show that (A A B) is falsifiable.
7 ={A— 0,B+ 1} (4 simple proof that Z [= (A A B))

m Show that (A A B) is not valid.
Follows directly from falsifiability.
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Examples

How can we show that a formula has one of these properties?
m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))

m Show that (A A B) is falsifiable.
7 ={A— 0,B+ 1} (4 simple proof that Z [= (A A B))

m Show that (A A B) is not valid.
Follows directly from falsifiability.

m Show that (A A B) is not unsatisfiable.
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Examples

How can we show that a formula has one of these properties?
m Show that (A A B) is satisfiable.
Z={A~ 1,B+> 1} (+ simple proof that Z |= (A A B))
m Show that (A A B) is falsifiable.
7 ={A+ 0,B+ 1} (+ simple proof that Z }= (A A B))
m Show that (A A B) is not valid.
Follows directly from falsifiability.

m Show that (A A B) is not unsatisfiable.
Follows directly from satisfiability.
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How can we show that a formula has one of these properties?
m Show that (A A B) is satisfiable.
7 ={A+1,B+> 1} (+ simple proof that Z = (A A B))

m Show that (A A B) is falsifiable.
7 ={A— 0,B+ 1} (4 simple proof that Z [= (A A B))

m Show that (A A B) is not valid.
Follows directly from falsifiability.
m Show that (A A B) is not unsatisfiable.
Follows directly from satisfiability.
So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/
not satisfiable/not falsifiable?



Examples

How can we show that a formula has one of these properties?

m Show that (A A B) is satisfiable.

Z={A~ 1,B+> 1} (+ simple proof that Z |= (A A B))
m Show that (A A B) is falsifiable.

7 ={A+ 0,B+ 1} (+ simple proof that Z }= (A A B))
m Show that (A A B) is not valid.

Follows directly from falsifiability.
m Show that (A A B) is not unsatisfiable.

Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/
not satisfiable/not falsifiable?

~> must consider all possible interpretations
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Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.
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Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) | T = -A
0
1
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Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

Z(A) ‘ 7E-A
0 Yes
1 No
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Truth Tables

Evaluate for all possible interpretations

if they are models of the considered formula.

Z(A) ‘ 7E-A
0 Yes
1 No

I(A) I(B) || (AAB)
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Truth Tables

Evaluate for all possible interpretations

if they are models of the considered formula.

Z(A) ‘ 7E-A
0 Yes
1 No

I(A) I(B) |Z}=(AAB)
No
No
No
Yes
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Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

Z(A) ‘ 7E-A
0 Yes
1 No

) I(B) T} (AAB) I(A) Z(B) | Tk (AVB)
0 0 0 0 No

0 1 No 0 1 Yes
1 0 1 0
1 1 1 1

Yes
Yes
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Truth Tables in General

Similarly in the case where we consider a formula whose building
blocks are themselves arbitrary unspecified formulas:

IEp IEY|[TIE(eAY)

No No No
No Yes No
Yes No No

Yes Yes Yes
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Exercise

Specify the truth table for (o — ).
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Is ¢ = ((A — B) vV (=B — A)) valid, unsatisfiable, ...?

I(A) IB)|IE-B IE(A—B) ITE(-B—A) Tk
0 0 Yes Yes No Yes
0 1 No Yes Yes Yes
1 0 Yes No Yes Yes
1 1 No Yes Yes Yes
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Connection Between Formula Properties and Truth Tables

A propositional formula ¢ is

m satisfiable if ¢ has at least one model
~~ result in at least one row is “Yes"

m unsatisfiable if ¢ is not satisfiable
~ result in all rows is “No”

m valid (or a tautology) if ¢ is true under every interpretation
~ result in all rows is “Yes”

m falsifiable if ¢ is no tautology
~~ result in at least one row is “No”
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Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?
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Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

2 interpretations (rows)
4 interpretations (rows)
8 interpretations (rows)
777 interpretations

S W N -
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Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

1 | 2 interpretations (rows)
2 | 4 interpretations (rows)
3 | 8 interpretations (rows)
n | 2" interpretations

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824
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Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

1 | 2 interpretations (rows)
2 | 4 interpretations (rows)
3 | 8 interpretations (rows)
n | 2" interpretations

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824
~» not viable for larger formulas; we need a different solution
m more on difficulty of satisfiability etc.: Part E of this course

m practical algorithms: Foundations of Al course
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Questions

o

~

Questions?
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Logic: Overview

~| Syntax |

—I Semantics |

~| Properties |

—| Normal Forms |

Predicate Logical
Logic Consequence
—I Inference |

—| Resolution |
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Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas ¢ and i over A are (logically)
equivalent (¢ = ) if for all interpretations Z for A
it is true that Z |= ¢ if and only if Z = 1.

German: logisch aquivalent
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Equivalent Formulas: Example

((pVY)VX)=(pV (¥ VX))

es Summar

IE IE IE TE TE TE TE
e v x | (pVvy) (vx) (eve)VvX) (pV (VX))
No No No No No No No
No No  Yes No Yes Yes Yes
No Yes No Yes Yes Yes Yes
No Yes  Yes Yes Yes Yes Yes
Yes No No Yes No Yes Yes
Yes No  Yes Yes Yes Yes Yes
Yes  Yes No Yes Yes Yes Yes
Yes Yes  Yes Yes Yes Yes Yes
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Some Equivalences (1)

(php)=¢
(eVep)=p (idempotence)

German: Idempotenz
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Some Equivalences (1)

(php)=¢

(eVep)=p (idempotence)
(PAD)= (Y Ay

(V)= (V) (commutativity)

German: Idempotenz, Kommutativitat
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Some Equwalences (1)

(pAp)=

(pV)= (idempotence)
(PAD)= (Y Ay

(V)= (V) (commutativity)

((eAP)AX) = (A (¥ AX))
((evV)Vx)=(pV (¥ VX)) (associativity)

German: Idempotenz, Kommutativitat, Assoziativitat



Equivalences
00000800000

Some Equivalences (2)

(e A (e V1))
(o V(e A1)

€ 6

(absorption)

German: Absorption
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Some Equivalences (2)

(A (V)=

(eV(pny)) =¢ (absorption)
(A (VX)) =(eAY)V(pAX))
(eV(@AX)=(pV)A(pVX)) (distributivity)

German: Absorption, Distributivitat
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Some Equivalences (3)

TR = (Double negation)

German: Doppelnegation
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Some Equivalences (3)

TR = (Double negation)
(e AY) = (V)
(V) = (mp A1) (De Morgan’s rules)

German: Doppelnegation, De Morgansche Regeln
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Some Equivalences (3)

TR = (Double negation)

(e AY) = (V)

(V) = (mp A1) (De Morgan’s rules)
(
(

© V1) = ¢ if ¢ tautology
© A1) = if p tautology (tautology rules)

German: Doppelnegation, De Morgansche Regeln, Tautologieregeln

s Summar
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Some Equwalences (3)

= (Double negation)
(e AY) = (e vV Y)
(e V)= (-p A1) (De Morgan's rules)
(¢ V) = ¢ if ¢ tautology
(¢ A1) =9 if ¢ tautology (tautology rules)
(¢ V ¢) =9 if  unsatisfiable
(¢ A1) = ¢ if  unsatisfiable (unsatisfiability rules)

German: Doppelnegation, De Morgansche Regeln, Tautologieregeln,
Unerfiillbarkeitsregeln
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Substitution Theorem

Theorem (Substitution Theorem)

Let v and ¢’ be equivalent propositional formulas over A.
Let 1) be a propositional formula with (at least)
one occurrence of the subformula .

Then ) is equivalent to v)’, where 1)’ is constructed from 1)
by replacing an occurrence of ¢ in v with ¢’.

German: Ersetzbarkeitstheorem

(without proof)
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Application of Equivalences: Example

(PAQV-P)=((PAQ)V(PA-P)) (distributivity)
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Application of Equivalences: Example

(PAQV-P)=((PAQ)V(PA-P)) (distributivity)
=((PA=P)V(PAQ)) (commutativity)
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Application of Equivalences: Example

(PAQV-P)=((PAQ)V(PA-P)) (distributivity)
(PA=P)V(PAQ)) (commutativity)
=(PAQ) (unsatisfiability rule)
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Exercise

Use the equivalence rules to show that (AV —=(B Vv —A)) = A.
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Questions

o

~

Questions?
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Simplified Notation
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Parentheses

Associativity:

((pAY)AX)= (A (Y AX))
((pVy)vx)=(pV(¥Vx

m Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

m ditto for disjunctions of disjunctions

—» can omit parentheses and treat this as if parentheses
placed arbitrarily
m Example: (A1 A Ax A A3 A Ag) instead of
(A1 A (A2 A A3)) A Ag)
m Example: (=AV (B A C)VD) instead of ((mAV (BAC)) VD)
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!

((pAP)VX)Z (P A (Y VX))
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!

((pAP)VX)Z (P A (Y VX))

What should ¢ A ¢ V x mean?
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

es Summar
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Placement of Parentheses by Conventlon

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV-CAB— AV -D stands for AV -CAB — AV -D I
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Placement of Parentheses by Convention
Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV -D stands for AV (-CAB) - AV -D
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Placement of Parentheses by Convention
Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV -D stands for (AV (-CAB)) — (AV —-D)
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Placement of Parentheses by Convention
Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV =D stands for (AV (-CAB)) — (AV —-D))




mmh S Simplified Notation N T

000 0000000

Placement of Parentheses by Conventlon

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv

m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV =D stands for (AV (-CAB)) — (AV —-D))

m often harder to read
m error-prone

— not used in this course
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Short notation for addition:

n
Zizlx,-le—l—Xg-l—---—l—x,,



Simplified Notation
0000000

Short Notations for Conjunctions and Disjunctions
Short notation for addition:

n
Do xi=xhe X

Analogously:
(/\,r-':l‘pi) =(p1 A2 A Apn)
(\/,r-,:l‘pi) =(p1 V2 V- Vin)



Short Notations for Conjunctions and Disjunctions

Short notation for addition:

n
Zi_lxile—i—xz—i—---—{—x,,

Z X=X1+XxX2+ -+ X
XE{X1,...,Xn}

Analogously:

(/\,.n:lsOi):(solAstA---Ason)
(\/,.n:lsol-):(solwow---vson)
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Short Notations for Conjunctions and Disjunctions
Short notation for addition:
S xi=xitet X

Z X=x1+x+ -+ Xp
XE{X1 .., Xn }

Analogously (possible because of commutativity of A and V):

) =(Pr A2 A+ Agn)
‘Pi):(Spl\/SDZ\/"‘VSOn)

):(801/\<P2/\"'/\<Pn)
¢) =(p1Vpa V- Vpn)
for X = {p1,...,¢n}
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Short Notation: Corner Cases

Is Z = 4 true for

0= (P e 0= (V)

if X =0or X={x}7
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Short Notation: Corner Cases

Is Z = 4 true for

5= (A 0= (V9
if X =0or X={x}7

convention:
= (A,ep ) is tautology.
n (\/cpe(?) ¢) is unsatisfiable.

" (Avepg @) = (Veep 9) = x
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Short Notation: Corner Cases

Is Z = 4 true for

5= (A 0= (V9
if X =0or X={x}7

convention:
= (A,ep ) is tautology.
n (\/cpe(?) ¢) is unsatisfiable.
" (Ao ) = (Voep 9) = x
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Questions

o

N

Questions?
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Exercise

Express ( A7, (\/13-’:1 @ij)) without A and \/.
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Logic: Overview

~| Syntax

—I Semantics

|
|
~| Properties |
|

~| Equivalences

Predicate Logical
Logic Consequence
—I Inference |

—| Resolution |
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Why Normal Forms?

m A normal form is a representation
with certain syntactic restrictions.
m condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form
m advantages:
® can restrict proofs to formulas in normal form
m can define algorithms only for formulas in normal form

German: Normalform
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).



Normal Forms
000000000000 000

Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).

m A monomial is a conjunction of literals
(e.g., (QA—-PA=SAR)).
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).

m A monomial is a conjunction of literals
(e.g., (QA—-PA=SAR)).

The terms clause and monomial are also used for the corner case
with only one literal.
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).

m A monomial is a conjunction of literals
(e.g., (QA—-PA=SAR)).

The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom
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Terminology: Examples

[ | (—lQ/\R)

= (PV-Q)

m (PV-Q)AP)
m P

m (P—-Q)

m (PVP)

m P
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Terminology: Examples

= (-Q AR) is a monomial
m (PV-Q)

m (PV-Q)AP)

m P

m (P—-Q)

m (PVP)

m P
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Terminology: Examples

= (-Q AR) is a monomial
m (PV—Q)is a clause

= (PV-Q)AP)

m P

m (P—-Q)

m (PVP)

m P
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Terminology: Examples

= (-Q AR) is a monomial

m (PV—Q)is a clause

((P v =Q) A P) is neither literal nor clause nor monomial
-P

(P—Q)

(PVP)

m P
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Terminology: Examples

= (-Q AR) is a monomial
(PV—=Q) is a clause

((P v =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P—Q)

(PVP)

m P
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Terminology: Examples

= (-Q AR) is a monomial
(PV—=Q) is a clause

((P v =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clausel!)

(PVP)

m P
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Terminology: Examples

= (-Q AR) is a monomial
m (PV—Q)is a clause
m ((PV —Q) AP) is neither literal nor clause nor monomial
m —P is a literal, a clause and a monomial
m (P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clausel!)
m (P V P)is a clause, but not a literal or monomial
m P )
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Terminology: Examples

(#Q A R) is a monomial
(P Vv —Q) is a clause

((P v =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clausel!)

(P Vv P) is a clause, but not a literal or monomial

——=P is neither literal nor clause nor monomial
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Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i.e., if it has the form

n mj
AV Li

i=1 \j=1

with n,m; > 0 (for 1 </ < n), where the Lj; are literals.

German: konjunktive Normalform (KNF)

(-PVQ)ARA(PV=S))isin CNF.
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Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i.e., if it has the form

n mj
VI AL

i=1 \j=1

with n,m; > 0 (for 1 </ < n), where the Lj; are literals.

German: disjunktive Normalform (DNF)

(-PAQ)VRV(PA=S))isin DNF.
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CNF and DNF: Examples

Which of the following formulas are in CNF? Which are in DNF?

(PV-=Q)AP)
(RVQ)YAPA(RVYS))
(PV(-QAR))
((PVv-Q)—P)

P
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Construction of CNF (and DNF)

Algorithm to Construct CNF

@ Replace abbreviations — and <+ by their definitions
((—)-elimination and («+)-elimination).
~» formula structure: only V, A, =

@ Move negations inside using De Morgan and double negation.
~~ formula structure: only V, A, literals

© Distribute V over A with distributivity
(strictly speaking also with commutativity).
~> formula structure: CNF

@ optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute A over V instead.
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))
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Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

e=(((PA-Q)VR)VPV~(SVT)) [Step 1]
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Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

e=(((PA-Q)VR)VPV~(SVT)) [Step 1]
=((~(PA=-QA-R)VPV~=(SVT)) [Step 2]
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Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(=(PA-Q)VR)VPV=(SVT)) [Step 1]
(H(PA=-Q)A-R)VPV—(SVT)) [Step 2]
((F-PV--Q)A-R)VPV—=(SVT)) [Step 2]

¥
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Constructlng CNF Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(=(PA=-Q)A-R)VPV=(SVT)) [Step 2]
((=PV-=--Q)A=-R)VPV=(SVT)) [Step 2]
(FPVQ)A-R)VPV~=(SVT)) [Step 2]

¥
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Constructlng CNF Example

Construction of Conjunctive Normal Form

Given:

(p:

¥

(PA-Q)VR) = (PV—=(SVT)))

(=
(
(
(
(

(PA-Q)VR)VPV—=(SVT))
(=(PA=Q)A-R)VPV=(SVT))
(FPV—="—"Q)A-R)VPV—=(SVT))
(FPVQ)A-R)VPV~=(SVT))
(-PVQ)A=R) VPV (=SA-T))

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]
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Constructlng CNF Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(~(PA=Q)A-R)VPV=(SVT)) [Step 2]
((=PV-=--Q)A=-R)VPV=(SVT)) [Step 2]

= (=
(
(
(-PVQ)A—-R)VPV—(SVT))  [Step 2]
(
(
(

(FPVQ)A-R)VPV (=SA-T)) [Step 2]
(-PVQVPV (=S A-T)) A
—RVP V(=S A-T))) [Step 3]
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Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(“(PA=Q)A-R)VPV=(SVT)) [Step 2]
(=PV=—"Q)A=R)VPV(SVT)) [Step 2]
(=PVQ)A-R)VPV=(SVT)) [Step 2]
((FPVQ)A-R)VPV(=SA-T)) [Step 2]
(-PVQVPV(=SA-T))A
—“RV PV (=SA-T))) [Step 3]
“RVPV(=SA-T)) [Step 4]
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(=(PA=-Q)A-R)VPV=(SVT)) [Step 2]
((=PV-=--Q)A=-R)VPV=(SVT)) [Step 2]
(FPVQ)A-R)VPV~=(SVT)) [Step 2]

= (=
(
(
(
((F-PVQ)A-R) VPV (-SA-T)) [Step 2]
(
(
(
(

(-PVQVPV(=SA-T))A

RV PV (=S A-T))) [Step 3]
“RVPV(=SA-T)) [Step 4]
(FRVPV-=S)A(=RVPV-T)) [Step 3]
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Construct DNF: Example

Construction of Disjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))
e=(-(PA-Q)VR)VPV=(SVT)) [Step 1]
=((~(PA-Q)A-R)VPV~=(SVT)) [Step 2]
=(((-PV-"Q)A-R)VPV—(SVT)) [Step 2]
=(((-PVQ)A-R)VPV-(SVT)) [Step 2]
=(((-PVQ)A-R)VPV(=SA-T)) [Step 2]
=((-PA-R)V(QA-R)VPV(=SA-T)) [Step 3]
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is 3" always means “there is at least one”.
Otherwise we would write “there is exactly one”.
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is 3" always means “there is at least one”.
Otherwise we would write “there is exactly one”.

m Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is 3" always means “there is at least one”.
Otherwise we would write “there is exactly one”.

m Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.

m actual proof would use induction over structure of formula
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Size of Normal Forms

m In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

m Example: for (x1 Vy1) A-+- A (Xn V yn) there is no smaller
logically equivalent formula in DNF than:
Vserya,..n) (/\ieS Xi N Nieqa,..mp\s Yi)

m As a consequence, the construction of the CNF/DNF formula
can take exponential time.
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More Theorems

A formula in CNF is a tautology iff every clause is a tautology. I

A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

~> both proved easily with semantics of propositional logic
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Questions

o

~

Questions?
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Knowledge Bases
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Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)}

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i.e., a set of propositional formulas over A.

A truth assignment Z for A is a model for KB (written: Z |= KB)
if Z is a model for every formula ¢ € KB.

German: Wissensbasis, Modell
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Properties of Sets of Formulas

A knowledge base KB is
m satisfiable if KB has at least one model
m unsatisfiable if KB is not satisfiable
m valid (or a tautology) if every interpretation is a model for KB
m falsifiable if KB is no tautology

German: erfiillbar, unerfiillbar, giiltig, giiltig/eine Tautologie,
falsifizierbar
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Which of the properties does KB = {(A A =B),—(B V A)} have?
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Example |

Which of the properties does KB = {(A A =B),—(B V A)} have?

KB is unsatisfiable:

For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z |= (B V A) and thus Z [~ (B Vv A).
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Example |

Which of the properties does KB = {(A A =B),—(B V A)} have?

KB is unsatisfiable:
For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z |= (B V A) and thus Z [~ (B Vv A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.
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Example I

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)} have?
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Example I

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream V —DrinkBeer) — —EatFish)} have?

m satisfiable, e. g. with
7 = {EatFish — 1, DrinkBeer — 1, EatlceCream +— 0}

m thus not unsatisfiable

m falsifiable, e. g. with
7 = {EatFish — 0, DrinkBeer — 0, EatlceCream — 1}

m thus not valid
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Motivation for next lecture

What's the secret of your long life?

| am on a strict diet: If | don't drink beer
to a meal, then | always eat fish. When-
ever | have fish and beer with the same
meal, | abstain from ice cream. When |
eat ice cream or don't drink beer, then |
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net
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Motivation for next lecture

What's the secret of your long life?

| am on a strict diet: If | don't drink beer
to a meal, then | always eat fish. When-
ever | have fish and beer with the same
meal, | abstain from ice cream. When |
eat ice cream or don't drink beer, then |
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this? > logical consequences

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net
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Summary
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Summary

m satisfiability and validity are important properties of formulas
and knowledge bases.

m truth tables systematically consider all possible interpretations
m truth tables are only useful for small formulas

m Logical equivalence describes when formulas are
semantically indistinguishable.

m Equivalence rewriting is used to simplify formulas
and to bring them in normal forms.

m CNF: formula is a conjunction of clauses
m DNF: formula is a disjunction of monomials

m every formula has equivalent formulas in DNF and in CNF
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