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Why Logic?

» formalizing mathematics

> What is a true statement?

»> What is a valid proof?
P basis of many tools in computer science

> design of digital circuits
semantics of databases; query optimization
meaning of programming languages
verification of safety-critical hardware/software
knowledge representation in artificial intelligence
logic-based programming languages (e.g. Prolog)

VVvyVyVYYVYY
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Application: Logic Programming |

Declarative approach: Describe what to accomplish
not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.
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This is a hard problem!
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Application: Logic Programming Il

Prolog program

color(red). color(blue). color(green). color(yellow).

neighbor(StateAColor, StateBColor) :-
color(StateAColor), color(StateBColor),
StateAColor \= StateBColor.

switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
JU, LU, NE, NwW, OW, SG, SH, SO, SZ, TG,
TI, UR, VD, VS, ZG, ZH) :-
neighbor (AG, BE), neighbor(AG, BL), neighbor(AG, LU),

neighbor (UR, VS), neighbor(VD, VS), neighbor(ZH, ZG).
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What Logic is About

General Question:
> Given some knowledge about the world (a knowledge base)
» what can we derive from it?
» And on what basis may we argue?

~ logic

Goal: “mechanical” proofs
> formal “game with letters”

> detached from a concrete meaning
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Logic: Overview
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Task

Simplify this advice!

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:
P propositions are statements that can be either true or false
P atomic propositions cannot be split into sub-propositions

» logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren
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Examples for Building Blocks

If | don't drink beer to a meal, then |
always eat fish. Whenever | have fish and
beer with the same meal, | abstain from
ice cream. When | eat ice cream or don't
drink beer, then | never touch fish.

> Every sentence is a proposition that consists of
sub-propositions (e. g., “eat ice cream or don't drink beer").
> atomic propositions “drink beer”, “eat fish”, “eat ice cream”

> logical connectives “and”, “or”, negation, “if, then"

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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> Every sentence is a proposition that consists of
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Problems with Natural Language

If | don't drink beer to a meal, then |
always eat fish.

Whenever | have fish and beer with the
same meal, | abstain from ice cream.
When | eat ice cream or don't drink
beer, then | never touch fish.

» ‘“irrelevant” information

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Problems with Natural Language

If | don't drink beer, then | eat fish.
Whenever | have fish and beer, | abstain
from ice cream.

When | eat ice cream or don't drink
beer, then | never touch fish.

> ‘“irrelevant” information
» different formulations for the same connective/proposition

Exercise from U. Schéning: Logik fiir Informatiker
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Problems with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

> ‘“irrelevant” information
» different formulations for the same connective/proposition

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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What is Next?

» What are meaningful (well-defined) sequences of
atomic propositions and connectives?
“if then EatlceCream not or DrinkBeer and” not meaningful
— syntax
» What does it mean if we say that a statement is true?
Is “DrinkBeer and EatFish” true?
— semantics
» When does a statement logically follow from another?
Does “EatFish” follow from “if DrinkBeer, then EatFish”?
— logical entailment

German: Syntax, Semantik, logische Folgerung
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Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

> Every atom a € A is a propositional formula over A.

> If ¢ is a propositional formula over A,
then so is its negation —p.

» If ¢ and 1 are propositional formulas over A,
then so is the conjunction (¢ A ).

> If ¢ and 1) are propositional formulas over A,
then so is the disjunction (¢ V ).

The implication (¢ — 1) is an abbreviation for (= V 1).

The biconditional (¢ <> 7)) is an abbrev. for ((¢p — ) A (¢ — ¢)).

German: atomare Aussage, aussagenlogische Formel, Atom, Negation,
Konjunktion, Disjunktion, Implikation, Bikonditional
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Syntax: Examples

Which of the following sequences of symbols are propositional
formulas over the set of all possible letter sequences? Which kinds
of formula are they (atom, conjunction, ...)?

» (AAN(BVQ))

((EatFish A DrinkBeer) — —EatlceCream)
—( A Rain V StreetWet)

—(Rain V StreetWet)

~(A=B)

AN —=(B<+)C)

AV =(B + (Q))

(A<B)ACQ)

>
>
>
>
>
>
>
> (A1 AA2)V —=(Az < Ap))

(
(
(
(
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B1.3 Semantics
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Logic: Overview
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Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences
without any meaning.

For example, what does this mean:
((EatFish A DrinkBeer) — —EatlceCream)?

> We need semantics!
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Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)
A truth assignment (or interpretation) for a set of atomic
propositions A is a function Z : A — {0, 1}.

A propositional formula ¢ (over A) holds under Z
(written as Z |= ) according to the following definition:

ITka iff Z(a)=1 (for a € A)
TE - iff notZ o
IE(eAY) iff TlkEpandZ =y
Th(pve) f ThporTku
Question: should we define semantics of (¢ — ) and (¢ <> ¥)?

German: Wahrheitsbelegung/Interpretation, ¢ gilt unter Z
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Semantics of Propositional Logic: Terminology

» For Z |= ¢ we also say 7 is a model of ¢
and that ¢ is true under Z.

> If p does not hold under Z, we write this as Z - ¢
and say that 7 is no model of ¢
and that ¢ is false under Z.

» Note: = is not part of the formula
but part of the meta language (speaking about a formula).

German: Z ist ein/kein Modell von ; ¢ ist wahr/falsch unter Z; Metasprache

Gabriele Roger (University of Basel) Theory of Computer Science February 19, 2020 25 /31



B1. Propositional Logic | Semantics

Exercise

Consider set A = {X, Y, Z} of atomic propositions
and formula ¢ = (X A —Y).

Specify an interpretation Z for A with Z = .
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Semantics: Example (1)

A = {DrinkBeer, EatFish, EatlceCream}
Z = {DrinkBeer — 1, EatFish — 0, EatlceCream +— 1}
¢ = (—DrinkBeer — EatFish)

Do we have 7 |= ¢?
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Semantics: Example (2)
Goal: prove 7 = ¢.
Let us use the definitions we have seen:

7 = ¢ iff T |= (—DrinkBeer — EatFish)
iff Z = (——DrinkBeer Vv EatFish)
iff Z = =—DrinkBeer or Z |= EatFish
This means that if we want to prove Z |= ¢, it is sufficient to prove

7 |= ——DrinkBeer

or to prove
7 = EatFish.

We attempt to prove the first of these statements.
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Semantics: Example (3)

New goal: prove Z = ——DrinkBeer.

We again use the definitions:

Z = ——DrinkBeer iff not Z = —DrinkBeer
iff not not Z |= DrinkBeer
iff Z = DrinkBeer
iff Z(DrinkBeer) =1

The last statement is true for our interpretation Z.

To write this up as a proof of Z |= ¢,

we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.
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Semantics: Example (4)

Let Z = {DrinkBeer + 1, EatFish — 0, EatlceCream + 1}.
Proof that Z |= (—DrinkBeer — EatFish):

@ We have Z = DrinkBeer
(uses defn. of |= for atomic props. and fact
Z(DrinkBeer) = 1).
@ From (1), we get Z [~ —DrinkBeer
(uses defn. of |= for negations).
@ From (2), we get Z = ——DrinkBeer
(uses defn. of |= for negations).
@ From (3), we get Z |= (——DrinkBeer V 1) for all formulas 1,
in particular Z = (=—DrinkBeer V EatFish)
(uses defn. of |= for disjunctions).

@ From (4), we get Z = (—DrinkBeer — EatFish)
(uses defn. of “—"). O
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Summary

propositional logic based on atomic propositions
syntax defines what well-formed formulas are

semantics defines when a formula is true

vvyyy

interpretations are the basis of semantics
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