

Theory of Computer Science

A3. Proof Techniques

Gabriele Röger

University of Basel

February 17/19, 2020

Introduction
●oooooooo

Direct Proof
oooo

Indirect Proof
oooo

Contraposition
oo

Mathematical Induction
oooo

Structural Induction
oooooooo

Summary
oo

Introduction

Mathematical Statements

Mathematical Statement

A **mathematical statement** consists of a set of **preconditions** and a set of **conclusions**.

The statement is **true** if the conclusions are true whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung, Folgerung/Konklusion, wahr

Mathematical Statements

Mathematical Statement

A **mathematical statement** consists of a set of **preconditions** and a set of **conclusions**.

The statement is **true** if the conclusions are true whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung, Folgerung/Konklusion, wahr

Notes:

- set of preconditions is sometimes empty
- often, “assumptions” is used instead of “preconditions”; slightly unfortunate because “assumption” is also used with another meaning (\rightsquigarrow cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- “Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd.”
- “There exists an even prime number.”
- “Let $p \in \mathbb{N}_0$ with $p \geq 3$ be a prime number. Then p is odd.”
- “All prime numbers $p \geq 3$ are odd.”
- “For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ ”
- “The equation $a^k + b^k = c^k$ has infinitely many solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \geq 2$.”
- “The equation $a^k + b^k = c^k$ has no solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \geq 3$.”

What are the preconditions, what are the conclusions?

Proofs

Proof

A **proof** derives the correctness of a mathematical statement from a set of **axioms** and **previously proven statements**.

It consists of a sequence of **proof steps**, each of which **directly follows** from the axioms, previously proven statements and the preconditions of the statement, ending with the conclusions of the theorem.

German: Beweis, Axiom, Beweisschritt

Disproofs

- A **disproof** (**refutation**) analogously shows that a given mathematical statement is **false** by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.

German: Widerlegung

- Formally, disproofs are proofs of modified (“negated”) statements.
- Be careful about how to negate a statement!

Proof Strategies

typical proof/disproof strategies:

- ① "All $x \in S$ with the property P also have the property Q ."
"For all $x \in S$: if x has property P , then x has property Q ."
 - To prove, assume you are given an arbitrary $x \in S$ that has the property P .
Give a sequence of proof steps showing that x must have the property Q .
 - To disprove, find a **counterexample**, i. e., find an $x \in S$ that has property P but not Q and prove this.

Proof Strategies

typical proof/disproof strategies:

- ② “ A is a subset of B .”
 - To prove, assume you have an arbitrary element $x \in A$ and prove that $x \in B$.
 - To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

Proof Strategies

typical proof/disproof strategies:

- ③ “For all $x \in S$: x has property P iff x has property Q .”
(“iff”: “if and only if”)
 - To prove, separately prove “if P then Q ” and “if Q then P ”.
 - To disprove, disprove “if P then Q ” or disprove “if Q then P ”.

German: “iff” = gdw. (“genau dann, wenn”)

Proof Strategies

typical proof/disproof strategies:

- ④ “ $A = B$ ”, where A and B are sets.
 - To prove, separately prove “ $A \subseteq B$ ” and “ $B \subseteq A$ ”.
 - To disprove, disprove “ $A \subseteq B$ ” or disprove “ $B \subseteq A$ ”.

Proof Techniques

most common proof techniques:

- direct proof
- indirect proof (proof by contradiction)
- contraposition
- mathematical induction
- structural induction

German: direkter Beweis, indirekter Beweis
(Beweis durch Widerspruch), Kontraposition,
vollständige Induktion, strukturelle Induktion

Introduction
oooooooo

Direct Proof
●oooo

Indirect Proof
oooo

Contraposition
oo

Mathematical Induction
oooo

Structural Induction
oooooooooo

Summary
oo

Direct Proof

Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies
 $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies
 $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that
 $x \in A$ and $x \in B \cup C$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies
 $x \in (A \cap B) \cup (A \cap C)$ (⊆ part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that
 $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

...

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies
 $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that
 $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with
 $x \in A$, that $x \in A \cap C$.

...

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies
 $x \in (A \cap B) \cup (A \cap C)$ (⊆ part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that
 $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with
 $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$,
and we conclude $x \in (A \cap B) \cup (A \cap C)$.

...

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

\supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

\supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

\supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$.

This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

...

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

\supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$.

This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

...

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa.

Thus, both sets are equal.

Direct Proof: Example

Theorem (distributivity)

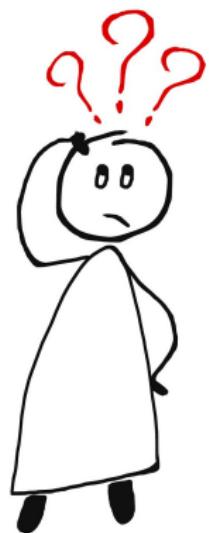
For all sets A, B, C : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

Alternative:

$$\begin{aligned} A \cap (B \cup C) &= \{x \mid x \in A \text{ and } x \in B \cup C\} \\ &= \{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\} \\ &= \{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\} \\ &= \{x \mid x \in A \cap B \text{ or } x \in A \cap C\} \\ &= (A \cap B) \cup (A \cap C) \end{aligned}$$

Questions



Questions?

Introduction
oooooooo

Direct Proof
oooo

Indirect Proof
●ooo

Contraposition
oo

Mathematical Induction
oooo

Structural Induction
oooooooooooo

Summary
oo

Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an **assumption** that the statement is false.
- Derive a **contradiction** from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

German: Annahme, Widerspruch

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Since $m \geq 2$, it must have a prime factor.

Let p be such a prime factor.

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Since $m \geq 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P .

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Since $m \geq 2$, it must have a prime factor.

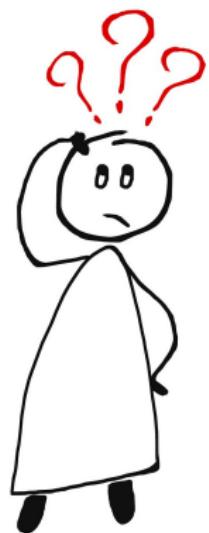
Let p be such a prime factor.

Since p is a prime number, p has to be in P .

The number m is not divisible without remainder by any of the numbers in P . Hence p is no factor of m .

~~ Contradiction

Questions



Questions?

Introduction
oooooooo

Direct Proof
oooo

Indirect Proof
oooo

Contraposition
●○

Mathematical Induction
oooo

Structural Induction
oooooooooo

Summary
oo

Contraposition

Contraposition

(Proof by) Contraposition

Prove “If A , then B ” by proving “If not B , then not A .”

German: (Beweis durch) Kontraposition

Contraposition

(Proof by) Contraposition

Prove “If A , then B ” by proving “If not B , then not A .”

German: (Beweis durch) Kontraposition

Examples:

- Prove “For all $n \in \mathbb{N}_0$: if n^2 is odd, then n is odd” by proving “For all $n \in \mathbb{N}_0$, if n is even, then n^2 is even.”
- Prove “For all $n \in \mathbb{N}_0$: if n is not a square number, then \sqrt{n} is irrational” by proving “For all $n \in \mathbb{N}_0$: if \sqrt{n} is rational, then n is a square number.”

Introduction
oooooooo

Direct Proof
oooo

Indirect Proof
oooo

Contraposition
oo

Mathematical Induction
●ooo

Structural Induction
oooooooooo

Summary
oo

Mathematical Induction

Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with $n \geq m$

- **basis:** proof of the statement for $n = m$
- **induction hypothesis (IH):**
suppose that the statement is true for all k with $m \leq k \leq n$
- **inductive step:** proof of the statement for $n + 1$
using the induction hypothesis

German: vollständige Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_0$ with $n \geq 1$: $\sum_{k=1}^n (2k - 1) = n^2$

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_0$ with $n \geq 1$: $\sum_{k=1}^n (2k - 1) = n^2$

Proof.

Mathematical induction over n :

basis $n = 1$: $\sum_{k=1}^1 (2k - 1) = 2 - 1 = 1 = 1^2$

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_0$ with $n \geq 1$: $\sum_{k=1}^n (2k - 1) = n^2$

Proof.

Mathematical induction over n :

basis $n = 1$: $\sum_{k=1}^1 (2k - 1) = 2 - 1 = 1 = 1^2$

IH: $\sum_{k=1}^m (2k - 1) = m^2$ for all $1 \leq m \leq n$

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_0$ with $n \geq 1$: $\sum_{k=1}^n (2k - 1) = n^2$

Proof.

Mathematical induction over n :

basis $n = 1$: $\sum_{k=1}^1 (2k - 1) = 2 - 1 = 1 = 1^2$

IH: $\sum_{k=1}^m (2k - 1) = m^2$ for all $1 \leq m \leq n$

inductive step $n \rightarrow n + 1$:

$$\begin{aligned}\sum_{k=1}^{n+1} (2k - 1) &= \left(\sum_{k=1}^n (2k - 1) \right) + 2(n + 1) - 1 \\ &\stackrel{\text{IH}}{=} n^2 + 2(n + 1) - 1 \\ &= n^2 + 2n + 1 = (n + 1)^2\end{aligned}$$

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Proof.

Mathematical Induction over n :

basis $n = 2$: trivially satisfied, since 2 is prime

...

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Proof.

Mathematical Induction over n :

basis $n = 2$: trivially satisfied, since 2 is prime

IH: Every natural number k with $2 \leq k \leq n$
can be written as a product of prime numbers.

...

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Proof (continued).

inductive step $n \rightarrow n + 1$:

- Case 1: $n + 1$ is a prime number \rightsquigarrow trivial

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Proof (continued).

inductive step $n \rightarrow n + 1$:

- Case 1: $n + 1$ is a prime number \rightsquigarrow trivial
- Case 2: $n + 1$ is not a prime number.

There are natural numbers $2 \leq q, r \leq n$ with $n + 1 = q \cdot r$.

Using IH shows that there are prime numbers

q_1, \dots, q_s with $q = q_1 \cdot \dots \cdot q_s$ and

r_1, \dots, r_t with $r = r_1 \cdot \dots \cdot r_t$.

Together this means $n + 1 = q_1 \cdot \dots \cdot q_s \cdot r_1 \cdot \dots \cdot r_t$.

Introduction
oooooooo

Direct Proof
oooo

Indirect Proof
oooo

Contraposition
oo

Mathematical Induction
oooo

Structural Induction
●oooooooo

Summary
oo

Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n + 1$ is a natural number.

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n + 1$ is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- \square is a binary tree (a **leaf**)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with **inner node** \bigcirc).

German: Binärbaum, Blatt, innerer Knoten

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n + 1$ is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- \square is a binary tree (a **leaf**)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with **inner node** \bigcirc).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed by finite application of these rules

Inductive Definition of a Set

Inductive Definition

A set M can be defined **inductively** by specifying

- **basic elements** that are contained in M
- **construction rules** of the form

“Given some elements of M , another element of M can be constructed like this.”

German: induktive Definition, Basiselemente, Konstruktionsregeln

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- **basis**: proof of the statement for the basic elements
- **induction hypothesis (IH)**:
suppose that the statement is true for some elements M
- **inductive step**: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of **leaves** of a binary tree B , written $\text{leaves}(B)$, is defined as follows:

$$\text{leaves}(\square) = 1$$

$$\text{leaves}(\langle L, \bigcirc, R \rangle) = \text{leaves}(L) + \text{leaves}(R)$$

Definition (Inner Nodes of a Binary Tree)

The number of **inner nodes** of a binary tree B , written $\text{inner}(B)$, is defined as follows:

$$\text{inner}(\square) = 0$$

$$\text{inner}(\langle L, \bigcirc, R \rangle) = \text{inner}(L) + \text{inner}(R) + 1$$

Structural Induction: Example (2)

Theorem

For all binary trees B : $\text{inner}(B) = \text{leaves}(B) - 1$.

Structural Induction: Example (2)

Theorem

For all binary trees B : $\text{inner}(B) = \text{leaves}(B) - 1$.

Proof.

induction basis:

$$\text{inner}(\square) = 0 = 1 - 1 = \text{leaves}(\square) - 1$$

~~ statement is true for base case

...

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree $\langle L, \bigcirc, R \rangle$, we may use that it is true for the subtrees L and R .

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree $\langle L, \bigcirc, R \rangle$, we may use that it is true for the subtrees L and R .

inductive step for $B = \langle L, \bigcirc, R \rangle$:

$$\text{inner}(B) = \text{inner}(L) + \text{inner}(R) + 1$$

$$\stackrel{\text{IH}}{=} (\text{leaves}(L) - 1) + (\text{leaves}(R) - 1) + 1$$

$$= \text{leaves}(L) + \text{leaves}(R) - 1 = \text{leaves}(B) - 1$$

Structural Induction: Exercise

Definition (Height of a Binary Tree)

The **height** of a binary tree B , written $\text{height}(B)$, is defined as follows:

$$\text{height}(\square) = 0$$

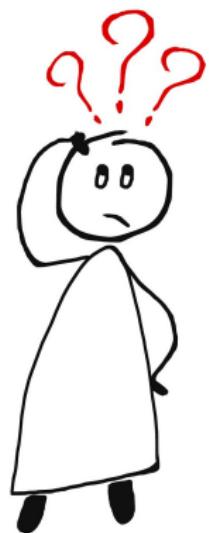
$$\text{height}(\langle L, \bigcirc, R \rangle) = \max\{\text{height}(L), \text{height}(R)\} + 1$$

Prove by structural induction:

Theorem

For all binary trees B : $\text{leaves}(B) \leq 2^{\text{height}(B)}$.

Questions



Questions?

Introduction
oooooooo

Direct Proof
oooo

Indirect Proof
oooo

Contraposition
oo

Mathematical Induction
oooo

Structural Induction
oooooooooooo

Summary
●●

Summary

Summary

- A **proof** is based on axioms and previously proven statements.
- Individual **proof steps** must be obvious derivations.
- **direct proof**: sequence of derivations or rewriting
- **indirect proof**: refute the negated statement
- **contraposition**: prove " $A \Rightarrow B$ " as "not $B \Rightarrow$ not A "
- **mathematical induction**: prove statement for a starting point and show that it always carries over to the next number
- **structural induction**: generalization of mathematical induction to arbitrary recursive structures