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Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung,
Folgerung/Konklusion, wahr

Notes:

set of preconditions is sometimes empty

often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning ( cf. indirect proofs)
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Examples of Mathematical Statements

Examples (some true, some false):

“Let p ∈ N0 be a prime number. Then p is odd.”

“There exists an even prime number.”

“Let p ∈ N0 with p ≥ 3 be a prime number. Then p is odd.”

“All prime numbers p ≥ 3 are odd.”

“For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )”

“The equation ak + bk = ck has infinitely many solutions
with a, b, c, k ∈ N1 and k ≥ 2.”

“The equation ak + bk = ck has no solutions
with a, b, c, k ∈ N1 and k ≥ 3.”

What are the preconditions, what are the conclusions?
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Proofs

Proof

A proof derives the correctness of a mathematical statement
from a set of axioms and previously proven statements.

It consists of a sequence of proof steps, each of which
directly follows from the axioms, previously proven statements
and the preconditions of the statement,
ending with the conclusions of the theorem.

German: Beweis, Axiom, Beweisschritt
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Disproofs

A disproof (refutation) analogously shows that a given
mathematical statement is false by giving an example
where the preconditions are true, but the conclusion is false.

This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

German: Widerlegung

Formally, disproofs are proofs of modified
(“negated”) statements.

Be careful about how to negate a statement!
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Proof Strategies

typical proof/disproof strategies:

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”

To prove, assume you are given an arbitrary x ∈ S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.
To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.
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Proof Strategies

typical proof/disproof strategies:
2 “A is a subset of B.”

To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.
To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.
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Proof Strategies

typical proof/disproof strategies:

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)

To prove, separately prove “if P then Q” and “if Q then P”.
To disprove, disprove “if P then Q” or disprove “if Q then P”.

German: “iff” = gdw. (“genau dann, wenn”)
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Proof Strategies

typical proof/disproof strategies:
4 “A = B”, where A and B are sets.

To prove, separately prove “A ⊆ B” and “B ⊆ A”.
To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.
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Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contraposition

mathematical induction

structural induction

German: direkter Beweis, indirekter Beweis
(Beweis durch Widerspruch), Kontraposition,
vollständige Induktion, strukturelle Induktion
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Direct Proof
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Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.



Introduction Direct Proof Indirect Proof Contraposition Mathematical Induction Structural Induction Summary

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

We first show that x ∈ A ∩ (B ∪ C ) implies
x ∈ (A ∩ B) ∪ (A ∩ C ) (⊆ part):

Let x ∈ A ∩ (B ∪ C ). Then by the definition of ∩ it holds that
x ∈ A and x ∈ B ∪ C .

We make a case distinction between x ∈ B and x /∈ B:

If x ∈ B then, because x ∈ A is true, x ∈ A ∩ B must be true.

Otherwise, because x ∈ B ∪ C we know that x ∈ C and thus with
x ∈ A, that x ∈ A ∩ C .

In both cases x ∈ A ∩ B or x ∈ A ∩ C ,
and we conclude x ∈ (A ∩ B) ∪ (A ∩ C ).

. . .
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Direct Proof: Example

Theorem (distributivity)
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and thus x ∈ A ∩ (B ∪ C ).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof (continued).

We have shown that every element of A ∩ (B ∪ C )
is an element of (A ∩ B) ∪ (A ∩ C ) and vice versa.
Thus, both sets are equal.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

Alternative:

A ∩ (B ∪ C ) = {x | x ∈ A and x ∈ B ∪ C}
= {x | x ∈ A and (x ∈ B or x ∈ C )}
= {x | (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C )}
= {x | x ∈ A ∩ B or x ∈ A ∩ C}
= (A ∩ B) ∪ (A ∩ C )
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Questions

Questions?
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Indirect Proof
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Indirect Proof

Indirect Proof (Proof by Contradiction)

Make an assumption that the statement is false.

Derive a contradiction from the assumption
together with the preconditions of the statement.

This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.

German: Annahme, Widerspruch
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Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let P = {p1, . . . , pn} be the set of all prime numbers.

Define m = p1 · . . . · pn + 1.

Since m ≥ 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.

 Contradiction
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Questions

Questions?
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Contraposition
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Contraposition

(Proof by) Contraposition

Prove “If A, then B” by proving “If not B, then not A.”

German: (Beweis durch) Kontraposition

Examples:

Prove “For all n ∈ N0: if n2 is odd, then n is odd”
by proving “For all n ∈ N0, if n is even, then n2 is even.”

Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”
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Mathematical Induction
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Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with n ≥ m

basis: proof of the statement for n = m

induction hypothesis (IH):
suppose that the statement is true for all k with m ≤ k ≤ n

inductive step: proof of the statement for n + 1
using the induction hypothesis

German: vollständige Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt



Introduction Direct Proof Indirect Proof Contraposition Mathematical Induction Structural Induction Summary

Mathematical Induction: Example I

Theorem

For all n ∈ N0 with n ≥ 1:
∑n

k=1(2k − 1) = n2

Proof.

Mathematical induction over n:

basis n = 1:
∑1

k=1(2k − 1) = 2− 1 = 1 = 12

IH:
∑m

k=1(2k − 1) = m2 for all 1 ≤ m ≤ n

inductive step n→ n + 1:∑n+1

k=1
(2k − 1) =

(∑n

k=1
(2k − 1)

)
+ 2(n + 1)− 1

IH
= n2 + 2(n + 1)− 1

= n2 + 2n + 1 = (n + 1)2
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Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.
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Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 ≤ k ≤ n
IH: can be written as a product of prime numbers.

. . .
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Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof (continued).

inductive step n→ n + 1:

Case 1: n + 1 is a prime number  trivial

Case 2: n + 1 is not a prime number.
There are natural numbers 2 ≤ q, r ≤ n with n + 1 = q · r .
Using IH shows that there are prime numbers
q1, . . . , qs with q = q1 · . . . · qs and
r1, . . . , rt with r = r1 · . . . · rt .
Together this means n + 1 = q1 · . . . · qs · r1 · . . . · rt .
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Structural Induction
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

� is a binary tree (a leaf)

If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: induktive Definition, Basiselemente, Konstruktionsregeln
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Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

basis: proof of the statement for the basic elements

induction hypothesis (IH):
suppose that the statement is true for some elements M

inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(�) = 1

leaves(〈L,©,R〉) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(�) = 0

inner(〈L,©,R〉) = inner(L) + inner(R) + 1
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Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .
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Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1
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Structural Induction: Exercise

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(�) = 0

height(〈L,©,R〉) = max{height(L), height(R)}+ 1

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) ≤ 2height(B).
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Questions

Questions?
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Summary

A proof is based on axioms and previously proven statements.

Individual proof steps must be obvious derivations.

direct proof: sequence of derivations or rewriting

indirect proof: refute the negated statement

contraposition: prove “A⇒ B” as “not B ⇒ not A”

mathematical induction: prove statement for a starting point
and show that it always carries over to the next number

structural induction: generalization of mathematical induction
to arbitrary recursive structures
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