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A3. Proof Techniques Introduction

Mathematical Statements

Mathematical Statement
A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung,
Folgerung/Konklusion, wahr

Notes:

I set of preconditions is sometimes empty

I often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning ( cf. indirect proofs)
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A3. Proof Techniques Introduction

Examples of Mathematical Statements

Examples (some true, some false):

I “Let p ∈ N0 be a prime number. Then p is odd.”

I “There exists an even prime number.”

I “Let p ∈ N0 with p ≥ 3 be a prime number. Then p is odd.”

I “All prime numbers p ≥ 3 are odd.”

I “For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )”

I “The equation ak + bk = ck has infinitely many solutions
with a, b, c , k ∈ N1 and k ≥ 2.”

I “The equation ak + bk = ck has no solutions
with a, b, c , k ∈ N1 and k ≥ 3.”

What are the preconditions, what are the conclusions?
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A3. Proof Techniques Introduction

Proofs

Proof
A proof derives the correctness of a mathematical statement
from a set of axioms and previously proven statements.

It consists of a sequence of proof steps, each of which
directly follows from the axioms, previously proven statements
and the preconditions of the statement,
ending with the conclusions of the theorem.

German: Beweis, Axiom, Beweisschritt
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A3. Proof Techniques Introduction

Disproofs

I A disproof (refutation) analogously shows that a given
mathematical statement is false by giving an example
where the preconditions are true, but the conclusion is false.

I This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

German: Widerlegung

I Formally, disproofs are proofs of modified
(“negated”) statements.

I Be careful about how to negate a statement!
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A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”
I To prove, assume you are given an arbitrary x ∈ S

that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.

I To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.
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A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:
2 “A is a subset of B.”

I To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.

I To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.
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A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)
I To prove, separately prove “if P then Q” and “if Q then P”.
I To disprove, disprove “if P then Q” or disprove “if Q then P”.

German: “iff” = gdw. (“genau dann, wenn”)
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A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:
4 “A = B”, where A and B are sets.

I To prove, separately prove “A ⊆ B” and “B ⊆ A”.
I To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.
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A3. Proof Techniques Introduction

Proof Techniques

most common proof techniques:

I direct proof

I indirect proof (proof by contradiction)

I contraposition

I mathematical induction

I structural induction

German: direkter Beweis, indirekter Beweis
(Beweis durch Widerspruch), Kontraposition,
vollständige Induktion, strukturelle Induktion
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A3.2 Direct Proof
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A3. Proof Techniques Direct Proof

Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.
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A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

We first show that x ∈ A ∩ (B ∪ C ) implies
x ∈ (A ∩ B) ∪ (A ∩ C ) (⊆ part):

Let x ∈ A ∩ (B ∪ C ). Then by the definition of ∩ it holds that
x ∈ A and x ∈ B ∪ C .

We make a case distinction between x ∈ B and x /∈ B:

If x ∈ B then, because x ∈ A is true, x ∈ A ∩ B must be true.

Otherwise, because x ∈ B ∪ C we know that x ∈ C and thus with
x ∈ A, that x ∈ A ∩ C .

In both cases x ∈ A ∩ B or x ∈ A ∩ C ,
and we conclude x ∈ (A ∩ B) ∪ (A ∩ C ). . . .
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A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof (continued).

⊇ part: we must show that x ∈ (A ∩ B) ∪ (A ∩ C ) implies
x ∈ A ∩ (B ∪ C ).

Let x ∈ (A ∩ B) ∪ (A ∩ C ).

We make a case distinction between x ∈ A ∩ B and x /∈ A ∩ B:

If x ∈ A ∩ B then x ∈ A and x ∈ B.
The latter implies x ∈ B ∪ C and hence x ∈ A ∩ (B ∪ C ).

If x /∈ A ∩ B we know x ∈ A ∩ C due to x ∈ (A ∩ B) ∪ (A ∩ C ).
This (analogously) implies x ∈ A and x ∈ C , and hence x ∈ B ∪ C
and thus x ∈ A ∩ (B ∪ C ).

In both cases we conclude x ∈ A ∩ (B ∪ C ). . . .
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A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof (continued).

We have shown that every element of A ∩ (B ∪ C )
is an element of (A ∩ B) ∪ (A ∩ C ) and vice versa.
Thus, both sets are equal.
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A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.
Alternative:

A ∩ (B ∪ C ) = {x | x ∈ A and x ∈ B ∪ C}
= {x | x ∈ A and (x ∈ B or x ∈ C )}
= {x | (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C )}
= {x | x ∈ A ∩ B or x ∈ A ∩ C}
= (A ∩ B) ∪ (A ∩ C )
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A3.3 Indirect Proof
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A3. Proof Techniques Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)
I Make an assumption that the statement is false.

I Derive a contradiction from the assumption
together with the preconditions of the statement.

I This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.

German: Annahme, Widerspruch
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Indirect Proof: Example

Theorem
There are infinitely many prime numbers.

Proof.
Assumption: There are only finitely many prime numbers.

Let P = {p1, . . . , pn} be the set of all prime numbers.

Define m = p1 · . . . · pn + 1.

Since m ≥ 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.

 Contradiction
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A3.4 Contraposition
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A3. Proof Techniques Contraposition

Contraposition

(Proof by) Contraposition

Prove “If A, then B” by proving “If not B, then not A.”

German: (Beweis durch) Kontraposition

Examples:

I Prove “For all n ∈ N0: if n2 is odd, then n is odd”
by proving “For all n ∈ N0, if n is even, then n2 is even.”

I Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”
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A3.5 Mathematical Induction
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Mathematical Induction

Mathematical Induction
Proof of a statement for all natural numbers n with n ≥ m

I basis: proof of the statement for n = m

I induction hypothesis (IH):
suppose that the statement is true for all k with m ≤ k ≤ n

I inductive step: proof of the statement for n + 1
using the induction hypothesis

German: vollständige Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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A3. Proof Techniques Mathematical Induction

Mathematical Induction: Example I

Theorem

For all n ∈ N0 with n ≥ 1:
∑n

k=1(2k − 1) = n2

Proof.
Mathematical induction over n:

basis n = 1:
∑1

k=1(2k − 1) = 2− 1 = 1 = 12

IH:
∑m

k=1(2k − 1) = m2 for all 1 ≤ m ≤ n

inductive step n→ n + 1:∑n+1

k=1
(2k − 1) =

(∑n

k=1
(2k − 1)

)
+ 2(n + 1)− 1

IH
= n2 + 2(n + 1)− 1

= n2 + 2n + 1 = (n + 1)2

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 26 / 38
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Mathematical Induction: Example II

Theorem
Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.
Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 ≤ k ≤ n
IH: can be written as a product of prime numbers. . . .
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A3. Proof Techniques Mathematical Induction

Mathematical Induction: Example II

Theorem
Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof (continued).

inductive step n→ n + 1:

I Case 1: n + 1 is a prime number  trivial

I Case 2: n + 1 is not a prime number.
There are natural numbers 2 ≤ q, r ≤ n with n + 1 = q · r .
Using IH shows that there are prime numbers
q1, . . . , qs with q = q1 · . . . · qs and
r1, . . . , rt with r = r1 · . . . · rt .
Together this means n + 1 = q1 · . . . · qs · r1 · . . . · rt .
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A3.6 Structural Induction
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

I 0 is a natural number.

I If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

I � is a binary tree (a leaf)

I If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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Inductive Definition of a Set

Inductive Definition
A set M can be defined inductively by specifying

I basic elements that are contained in M

I construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: induktive Definition, Basiselemente, Konstruktionsregeln
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Structural Induction

Structural Induction
Proof of statement for all elements of an inductively defined set

I basis: proof of the statement for the basic elements

I induction hypothesis (IH):
suppose that the statement is true for some elements M

I inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(�) = 1

leaves(〈L,©,R〉) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(�) = 0

inner(〈L,©,R〉) = inner(L) + inner(R) + 1
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Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.
induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 34 / 38



A3. Proof Techniques Structural Induction

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1
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Structural Induction: Exercise

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(�) = 0

height(〈L,©,R〉) = max{height(L), height(R)}+ 1

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) ≤ 2height(B).
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A3.7 Summary
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A3. Proof Techniques Summary

Summary

I A proof is based on axioms and previously proven statements.

I Individual proof steps must be obvious derivations.

I direct proof: sequence of derivations or rewriting

I indirect proof: refute the negated statement

I contraposition: prove “A⇒ B” as “not B ⇒ not A”

I mathematical induction: prove statement for a starting point
and show that it always carries over to the next number

I structural induction: generalization of mathematical induction
to arbitrary recursive structures

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 38 / 38


	Introduction
	

	Direct Proof
	

	Indirect Proof
	

	Contraposition
	

	Mathematical Induction
	

	Structural Induction
	

	Summary
	


