
Theory of Computer Science
A3. Proof Techniques

Gabriele Röger

University of Basel

February 17/19, 2020

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 1 / 38

Theory of Computer Science
February 17/19, 2020 — A3. Proof Techniques

A3.1 Introduction

A3.2 Direct Proof

A3.3 Indirect Proof

A3.4 Contraposition

A3.5 Mathematical Induction

A3.6 Structural Induction

A3.7 Summary

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 2 / 38

A3. Proof Techniques Introduction

A3.1 Introduction

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 3 / 38

A3. Proof Techniques Introduction

Mathematical Statements

Mathematical Statement
A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung,
Folgerung/Konklusion, wahr

Notes:

I set of preconditions is sometimes empty

I often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning (cf. indirect proofs)

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 4 / 38

A3. Proof Techniques Introduction

Examples of Mathematical Statements

Examples (some true, some false):

I “Let p ∈ N0 be a prime number. Then p is odd.”

I “There exists an even prime number.”

I “Let p ∈ N0 with p ≥ 3 be a prime number. Then p is odd.”

I “All prime numbers p ≥ 3 are odd.”

I “For all sets A, B, C : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)”

I “The equation ak + bk = ck has infinitely many solutions
with a, b, c , k ∈ N1 and k ≥ 2.”

I “The equation ak + bk = ck has no solutions
with a, b, c , k ∈ N1 and k ≥ 3.”

What are the preconditions, what are the conclusions?

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 5 / 38

A3. Proof Techniques Introduction

Proofs

Proof
A proof derives the correctness of a mathematical statement
from a set of axioms and previously proven statements.

It consists of a sequence of proof steps, each of which
directly follows from the axioms, previously proven statements
and the preconditions of the statement,
ending with the conclusions of the theorem.

German: Beweis, Axiom, Beweisschritt

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 6 / 38

A3. Proof Techniques Introduction

Disproofs

I A disproof (refutation) analogously shows that a given
mathematical statement is false by giving an example
where the preconditions are true, but the conclusion is false.

I This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

German: Widerlegung

I Formally, disproofs are proofs of modified
(“negated”) statements.

I Be careful about how to negate a statement!

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 7 / 38

A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”
I To prove, assume you are given an arbitrary x ∈ S

that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.

I To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 8 / 38

A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:
2 “A is a subset of B.”

I To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.

I To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 9 / 38

A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)
I To prove, separately prove “if P then Q” and “if Q then P”.
I To disprove, disprove “if P then Q” or disprove “if Q then P”.

German: “iff” = gdw. (“genau dann, wenn”)

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 10 / 38

A3. Proof Techniques Introduction

Proof Strategies

typical proof/disproof strategies:
4 “A = B”, where A and B are sets.

I To prove, separately prove “A ⊆ B” and “B ⊆ A”.
I To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 11 / 38

A3. Proof Techniques Introduction

Proof Techniques

most common proof techniques:

I direct proof

I indirect proof (proof by contradiction)

I contraposition

I mathematical induction

I structural induction

German: direkter Beweis, indirekter Beweis
(Beweis durch Widerspruch), Kontraposition,
vollständige Induktion, strukturelle Induktion

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 12 / 38

A3. Proof Techniques Direct Proof

A3.2 Direct Proof

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 13 / 38

A3. Proof Techniques Direct Proof

Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 14 / 38

A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof.

We first show that x ∈ A ∩ (B ∪ C) implies
x ∈ (A ∩ B) ∪ (A ∩ C) (⊆ part):

Let x ∈ A ∩ (B ∪ C). Then by the definition of ∩ it holds that
x ∈ A and x ∈ B ∪ C .

We make a case distinction between x ∈ B and x /∈ B:

If x ∈ B then, because x ∈ A is true, x ∈ A ∩ B must be true.

Otherwise, because x ∈ B ∪ C we know that x ∈ C and thus with
x ∈ A, that x ∈ A ∩ C .

In both cases x ∈ A ∩ B or x ∈ A ∩ C ,
and we conclude x ∈ (A ∩ B) ∪ (A ∩ C). . . .

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 15 / 38

A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof (continued).

⊇ part: we must show that x ∈ (A ∩ B) ∪ (A ∩ C) implies
x ∈ A ∩ (B ∪ C).

Let x ∈ (A ∩ B) ∪ (A ∩ C).

We make a case distinction between x ∈ A ∩ B and x /∈ A ∩ B:

If x ∈ A ∩ B then x ∈ A and x ∈ B.
The latter implies x ∈ B ∪ C and hence x ∈ A ∩ (B ∪ C).

If x /∈ A ∩ B we know x ∈ A ∩ C due to x ∈ (A ∩ B) ∪ (A ∩ C).
This (analogously) implies x ∈ A and x ∈ C , and hence x ∈ B ∪ C
and thus x ∈ A ∩ (B ∪ C).

In both cases we conclude x ∈ A ∩ (B ∪ C). . . .

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 16 / 38

A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof (continued).

We have shown that every element of A ∩ (B ∪ C)
is an element of (A ∩ B) ∪ (A ∩ C) and vice versa.
Thus, both sets are equal.

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 17 / 38

A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof.
Alternative:

A ∩ (B ∪ C) = {x | x ∈ A and x ∈ B ∪ C}
= {x | x ∈ A and (x ∈ B or x ∈ C)}
= {x | (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)}
= {x | x ∈ A ∩ B or x ∈ A ∩ C}
= (A ∩ B) ∪ (A ∩ C)

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 18 / 38

A3. Proof Techniques Indirect Proof

A3.3 Indirect Proof

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 19 / 38

A3. Proof Techniques Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)
I Make an assumption that the statement is false.

I Derive a contradiction from the assumption
together with the preconditions of the statement.

I This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.

German: Annahme, Widerspruch

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 20 / 38

A3. Proof Techniques Indirect Proof

Indirect Proof: Example

Theorem
There are infinitely many prime numbers.

Proof.
Assumption: There are only finitely many prime numbers.

Let P = {p1, . . . , pn} be the set of all prime numbers.

Define m = p1 · . . . · pn + 1.

Since m ≥ 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.

 Contradiction

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 21 / 38

A3. Proof Techniques Contraposition

A3.4 Contraposition

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 22 / 38

A3. Proof Techniques Contraposition

Contraposition

(Proof by) Contraposition

Prove “If A, then B” by proving “If not B, then not A.”

German: (Beweis durch) Kontraposition

Examples:

I Prove “For all n ∈ N0: if n2 is odd, then n is odd”
by proving “For all n ∈ N0, if n is even, then n2 is even.”

I Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 23 / 38

A3. Proof Techniques Mathematical Induction

A3.5 Mathematical Induction

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 24 / 38

A3. Proof Techniques Mathematical Induction

Mathematical Induction

Mathematical Induction
Proof of a statement for all natural numbers n with n ≥ m

I basis: proof of the statement for n = m

I induction hypothesis (IH):
suppose that the statement is true for all k with m ≤ k ≤ n

I inductive step: proof of the statement for n + 1
using the induction hypothesis

German: vollständige Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 25 / 38

A3. Proof Techniques Mathematical Induction

Mathematical Induction: Example I

Theorem

For all n ∈ N0 with n ≥ 1:
∑n

k=1(2k − 1) = n2

Proof.
Mathematical induction over n:

basis n = 1:
∑1

k=1(2k − 1) = 2− 1 = 1 = 12

IH:
∑m

k=1(2k − 1) = m2 for all 1 ≤ m ≤ n

inductive step n→ n + 1:∑n+1

k=1
(2k − 1) =

(∑n

k=1
(2k − 1)

)
+ 2(n + 1)− 1

IH
= n2 + 2(n + 1)− 1

= n2 + 2n + 1 = (n + 1)2

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 26 / 38

A3. Proof Techniques Mathematical Induction

Mathematical Induction: Example II

Theorem
Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.
Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 ≤ k ≤ n
IH: can be written as a product of prime numbers. . . .

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 27 / 38

A3. Proof Techniques Mathematical Induction

Mathematical Induction: Example II

Theorem
Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof (continued).

inductive step n→ n + 1:

I Case 1: n + 1 is a prime number trivial

I Case 2: n + 1 is not a prime number.
There are natural numbers 2 ≤ q, r ≤ n with n + 1 = q · r .
Using IH shows that there are prime numbers
q1, . . . , qs with q = q1 · . . . · qs and
r1, . . . , rt with r = r1 · . . . · rt .
Together this means n + 1 = q1 · . . . · qs · r1 · . . . · rt .

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 28 / 38

A3. Proof Techniques Structural Induction

A3.6 Structural Induction

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 29 / 38

A3. Proof Techniques Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

I 0 is a natural number.

I If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

I � is a binary tree (a leaf)

I If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 30 / 38

A3. Proof Techniques Structural Induction

Inductive Definition of a Set

Inductive Definition
A set M can be defined inductively by specifying

I basic elements that are contained in M

I construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: induktive Definition, Basiselemente, Konstruktionsregeln

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 31 / 38

A3. Proof Techniques Structural Induction

Structural Induction

Structural Induction
Proof of statement for all elements of an inductively defined set

I basis: proof of the statement for the basic elements

I induction hypothesis (IH):
suppose that the statement is true for some elements M

I inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 32 / 38

A3. Proof Techniques Structural Induction

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(�) = 1

leaves(〈L,©,R〉) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(�) = 0

inner(〈L,©,R〉) = inner(L) + inner(R) + 1

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 33 / 38

A3. Proof Techniques Structural Induction

Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.
induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 34 / 38

A3. Proof Techniques Structural Induction

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 35 / 38

A3. Proof Techniques Structural Induction

Structural Induction: Exercise

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(�) = 0

height(〈L,©,R〉) = max{height(L), height(R)}+ 1

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) ≤ 2height(B).

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 36 / 38

A3. Proof Techniques Summary

A3.7 Summary

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 37 / 38

A3. Proof Techniques Summary

Summary

I A proof is based on axioms and previously proven statements.

I Individual proof steps must be obvious derivations.

I direct proof: sequence of derivations or rewriting

I indirect proof: refute the negated statement

I contraposition: prove “A⇒ B” as “not B ⇒ not A”

I mathematical induction: prove statement for a starting point
and show that it always carries over to the next number

I structural induction: generalization of mathematical induction
to arbitrary recursive structures

Gabriele Röger (University of Basel) Theory of Computer Science February 17/19, 2020 38 / 38

	Introduction
	

	Direct Proof
	

	Indirect Proof
	

	Contraposition
	

	Mathematical Induction
	

	Structural Induction
	

	Summary
	

