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Übungsblatt 11 — Lösungen

Aufgabe 11.1 (Unentscheidbarkeit; 1+3+2 Punkte)

(a) Zeigen Sie, dass es für jedes Alphabet Σ eine kontextfreie Grammatik GPalindrom(Σ) gibt,
die genau die nichtleeren Palindrome über Σ erzeugt.

Lösung:

Die Grammatik GPalindrom(Σ) = 〈Σ, {S}, P, S〉 mit P = {S → x | x ∈ Σ} ∪ {S → xx |
x ∈ Σ} ∪ {S → xSx | x ∈ Σ} erzeugt genau die nicht-leeren Palindrome über Σ und ist
kontextfrei.

(b) Betrachten Sie eine PCP-Instanz I = 〈(x1, y1), . . . , (xk, yk)〉 mit xi, yi ∈ Σ+. Sei Σ′ =
Σ ∪ {#}, wobei # ein Zeichen ist, das in Σ nicht vorkommt. Geben Sie eine kontextfreie
Grammatik GI über Σ′ an, welche die folgende Sprache erzeugt (mit −1 bezeichnen wir hier
die Umkehrung eines Wortes):

L(GI) = {xi1 . . . xin#y−1in
. . . y−1i1

| n ≥ 1 und i1, . . . , in ∈ {1, . . . , k}}

Zeigen Sie dann, dass I genau dann eine Lösung hat, wenn L(GI) ein Palindrom enthält.

Lösung:

Die Grammatik GI = 〈Σ′, {S,Z}, P, S〉 mit P = {S → xiZy−1i | 1 ≤ i ≤ k}∪{Z → xiZy−1i |
1 ≤ i ≤ k} ∪ {Z → #} erzeugt die gesuchte Sprache und ist kontextfrei.

• Wenn i1, . . . in eine Lösung von I ist, können wir ein Palindrom in GI ableiten:

Dazu wird zuerst die Regel S → x1Zy−11 angewendet und dann die Regeln Z → xiZy−1i

für i = i2, . . . , i = ik. Zuletzt wird dann noch Z → # angewendet. Das so generierte
Wort ist xi1 . . . xin#y−1in

. . . y−1i1
. Es erfüllt xi1 . . . xin = yi1 . . . yin = (y−1in

. . . y−1i1
)−1

(weil i1, . . . in eine Lösung von I ist) und ist daher ein Palindrom.

• Wenn wir ein Palindrom in GI ableiten können, dann gibt es eine Lösung von I:

Da es nur eine Regel gibt, mit der # eingefügt wird und diese Regel genau einmal
angewendet werden muss, muss auch # genau einmal in jedem abgeleiteten Wort vor-
kommen. Wenn das abgeleitete Wort ein Palindrom ist, muss # in der Mitte stehen
und das Palindrom muss die Form x#y mit x, y ∈ Σ+ und x = y−1 haben. Zudem muss
es Indizes i1, . . . , in geben, so dass x = xi1 . . . xin und y = y−1in

. . . y−1i1
, da das Wort

sonst nicht in der Sprache wäre. Zusammen erhalten wir, dass xi1 . . . xin = x = y−1 =
(y−1in

. . . y−1i1
)−1 = yi1 . . . yin gilt, also ist i1, . . . , in eine Lösung für I.

(c) Verwenden Sie die Ergebnisse aus den Teilaufgaben (a) und (b) um zu beweisen, dass das
Schnittproblem für kontextfreie Grammatiken unentscheidbar ist.

Schnittkf : Gegeben zwei kontextfreie Grammatiken G1 und G2, gilt L(G1) ∩ L(G2) = ∅?

Hinweis: Natürlich können Sie die Aussagen aus den Teilen (a) und (b) auch verwenden,
wenn Sie die Aufgaben nicht gelöst haben.

Lösung:
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Wir zeigen, dass PCP ≤ Schnittkf. Weil PCP unentscheidbar ist, ist auch das Komplement
PCP unentscheidbar.

Wir verwenden die Reduktionsfunktion f(I) = 〈GI , GPalindrom(Σ′)〉. Diese Funktion ist total
und berechenbar da wir das Alphabet Σ′ und die Grammatiken GI und GPalindrom(Σ′) für
beliebige Instanzen I erstellen können.

Wir wissen aus Teilaufgabe (a), dass die kontext-freie Grammatik GPalindrom(Σ′) genau die
Sprache aller (nichtleeren) Palindrome über Σ′ generiert. Aus Teilaufgabe (b) wissen wir,
dass die kontext-freie Grammatik GI für eine Instanz I des PCP eine Sprache generiert,
die ein Palindrome enthäl gdw. es eine Lösung für I gibt. Also gilt GI ∩GPalindrom(Σ′) 6= ∅
gdw. I eine Lösung hat.

Zusammenfassend erhalten wir

I /∈ PCP gdw. GI ∩GPalindrom(Σ′) = ∅ gdw. f(I) ∈ Schnittkf

Daher ist f eine Reduktion von PCP auf Schnittkf. Weil PCP unentscheidbar ist, impli-
ziert das, dass auch Schnittkf unentscheidbar ist.

Aufgabe 11.2 (Nicht-deterministische Algorithmen; 2+2 Punkte)

Geben Sie für die folgenden Probleme einen nichtdeterministischen, polynomiellen Algorithmus
an. Damit zeigen Sie, dass die Probleme in der Komplexitätsklasse NP liegen, die wir nächste
Woche kennenlernen werden.

(a) HittingSet:

• Gegeben: endliche Menge M , Menge S = {S1, . . . , Sn} mit Si ⊆ M für alle i ∈
{1, . . . , n}, eine natürlich Zahl k ∈ N0

• Gefragt: Gibt es eine Menge H mit höchstens k Elementen, die aus jeder Menge aus S
mindestens ein Element enthält?

Formal: Gibt es eine Menge H mit |H| ≤ k und H ∩ Si 6= ∅ für alle i ∈ {1, . . . , n}?

Lösung:

Eingabe: Menge M , Menge von Mengen S, Zahl k

hittingset := ∅
remaining := M

not hit := S
WHILE |hittingset| < k :

GUESS next ∈ remaining

remaining := remaining \ {next}
hittingset := hittingset ∪ {next}
not hit prev := copy of not hit

FOR s ∈ not hit prev :

IF next ∈ s

not hit := not hit \ {s}
IF not hit = ∅ :

ACCEPT

REJECT

(b) SetPacking:
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• Gegeben: endliche Menge M , Menge S = {S1, . . . , Sn} mit Si ⊆ M für alle i ∈
{1, . . . , n}, eine natürlich Zahl k ∈ N0

• Gefragt: Gibt es S ′ ⊆ S mit |S ′| ≥ k, so dass alle Mengen in S ′ paarweise disjunkt sind,
d.h. für alle Si, Sj ∈ S ′ mit Si 6= Sj gilt Si ∩ Sj = ∅?

Lösung:

Eingabe: Menge M , Menge von Mengen S, Zahl k

chosen := ∅
remaining := S
WHILE |chosen| < k :

IF remaining = ∅ :

REJECT

GUESS next ∈ remaining

FOR set ∈ chosen :

IF next ∩ set 6= ∅ :

REJECT

chosen := chosen ∪ {next}
remaining := remaining \ {next}

ACCEPT
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