

Theory of Computer Science

G. Röger
F. Pommerening
Spring Term 2020

University of Basel
Computer Science

Exercise Sheet 11 — Solutions

Exercise 11.1 (Undecidability; 1+3+2 marks)

(a) Show that for every alphabet Σ there is a context-free grammar $G_{\text{palindrome}}(\Sigma)$ that generates exactly the non-empty palindromes over Σ .

Solution:

The grammar $G_{\text{palindrome}}(\Sigma) = \langle \Sigma, \{S\}, P, S \rangle$ with $P = \{S \rightarrow x \mid x \in \Sigma\} \cup \{S \rightarrow xx \mid x \in \Sigma\} \cup \{S \rightarrow xSx \mid x \in \Sigma\}$ generates exactly the non-empty palindromes over Σ and is context-free.

(b) Consider a PCP-instance $\mathcal{I} = \langle (x_1, y_1), \dots, (x_k, y_k) \rangle$ with $x_i, y_i \in \Sigma^+$. Let $\Sigma' = \Sigma \cup \{\#\}$ where $\#$ is a symbol that does not occur in Σ . Specify a context-free grammar $G_{\mathcal{I}}$ over Σ' , that generates the following language (with y^{-1} we denote the reverse of a word here):

$$\mathcal{L}(G_{\mathcal{I}}) = \{x_{i_1} \dots x_{i_n} \# y_{i_n}^{-1} \dots y_{i_1}^{-1} \mid n \geq 1 \text{ and } i_1, \dots, i_n \in \{1, \dots, k\}\}$$

Moreover, show that \mathcal{I} has a solution iff $\mathcal{L}(G_{\mathcal{I}})$ contains a palindrome.

Solution:

The grammar $G_{\mathcal{I}} = \langle \Sigma', \{S, Z\}, P, S \rangle$ with $P = \{S \rightarrow x_i Z y_i^{-1} \mid 1 \leq i \leq k\} \cup \{Z \rightarrow x_i Z y_i^{-1} \mid 1 \leq i \leq k\} \cup \{Z \rightarrow \#\}$ generates the desired language and is context-free.

- If i_1, \dots, i_n is a solution of \mathcal{I} then we can derive a palindrome in $G_{\mathcal{I}}$:

We first use the rule $S \rightarrow x_1 Z y_1^{-1}$ and then the rules $Z \rightarrow x_i Z y_i^{-1}$ for $i = i_2, \dots, i = i_k$. Finally, we use $Z \rightarrow \#$. The word generated in this way is $x_{i_1} \dots x_{i_n} \# y_{i_n}^{-1} \dots y_{i_1}^{-1}$. It satisfies $x_{i_1} \dots x_{i_n} = y_{i_1} \dots y_{i_n} = (y_{i_n}^{-1} \dots y_{i_1}^{-1})^{-1}$ (because i_1, \dots, i_n is a solution of \mathcal{I}) and is thus a palindrome.

- If we can derive a palindrome in $G_{\mathcal{I}}$ then there exists a solution of \mathcal{I} :

We first note that there is only one rule that can derive $\#$ and this rule must be used exactly once. Hence, the symbol $\#$ occurs once in every derived word. If this word is a palindrome, this occurrence must be in the middle of the word and the word has form $x \# y$ with $x, y \in \Sigma^+$ and $x = y^{-1}$. Moreover, there must be indices i_1, \dots, i_n such that $x = x_{i_1} \dots x_{i_n}$ and $y = y_{i_n}^{-1} \dots y_{i_1}^{-1}$ because otherwise this word would not be in the language. Together, we get that $x_{i_1} \dots x_{i_n} = x = y^{-1} = (y_{i_n}^{-1} \dots y_{i_1}^{-1})^{-1} = y_{i_1} \dots y_{i_n}$, so i_1, \dots, i_n is a solution for \mathcal{I} .

(c) Use the results from parts (a) and (b) to prove that the intersection problem of *context-free* languages is undecidable.

INTERSECTION_{CF} : Given two context-free grammars G_1 and G_2 , is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?

Note: of course you can use the statements of parts (a) and (b) even if you did not solve the exercises.

Solution:

We show that $\overline{\text{PCP}} \leq \text{INTERSECTION}_{\text{CF}}$. As PCP is undecidable its complement $\overline{\text{PCP}}$ is also undecidable.

We use reduction function $f(\mathcal{I}) = \langle G_{\mathcal{I}}, G_{\text{palindrome}}(\Sigma') \rangle$. This function is total and computable because we can create the alphabet Σ' and the grammars $G_{\mathcal{I}}$ and $G_{\text{palindrome}}(\Sigma')$ for any instance \mathcal{I} .

We know from part (a) that the context-free grammar $G_{\text{palindrome}}(\Sigma')$ generates exactly the language of all (non-empty) palindromes over Σ' . From part (b) we know that the context-free grammar $G_{\mathcal{I}}$ for an instance \mathcal{I} of the PCP generates a language that contains a palindrome iff there is a solution for \mathcal{I} . Thus, $G_{\mathcal{I}} \cap G_{\text{palindrome}}(\Sigma') \neq \emptyset$ iff \mathcal{I} has a solution.

Overall, we get

$$\mathcal{I} \notin \text{PCP} \text{ iff } G_{\mathcal{I}} \cap G_{\text{palindrome}}(\Sigma') = \emptyset \text{ iff } f(\mathcal{I}) \in \text{INTERSECTION}_{\text{CF}}$$

Hence, f is a reduction from $\overline{\text{PCP}}$ to $\text{INTERSECTION}_{\text{CF}}$. Since $\overline{\text{PCP}}$ is undecidable, this implies that $\text{INTERSECTION}_{\text{CF}}$ is also undecidable.

Exercise 11.2 (Non-deterministic Algorithms; 2+2 marks)

Specify a non-deterministic polynomial algorithm for each of the following problems. This shows that the problems are in NP, a complexity class we will introduce next week.

(a) HITTINGSET:

- *Given:* finite set M , set of sets $\mathcal{S} = \{S_1, \dots, S_n\}$ with $S_i \subseteq M$ for all $i \in \{1, \dots, n\}$, natural number $k \in \mathbb{N}_0$
- *Question:* Is there a set H with at most k elements, which contains at least one element from each set in \mathcal{S} .

Formally: Is there a set H with $|H| \leq k$ and $H \cap S_i \neq \emptyset$ for all $i \in \{1, \dots, n\}$?

Solution:

Input: set M , set of sets \mathcal{S} , number k

```

hittingset := ∅
remaining := M
not_hit := S
WHILE |hittingset| < k :
  GUESS next ∈ remaining
  remaining := remaining \ {next}
  hittingset := hittingset ∪ {next}
  not_hit_prev := copy of not_hit
  FOR s ∈ not_hit_prev :
    IF next ∈ s
      not_hit := not_hit \ {s}
    IF not_hit = ∅ :
      ACCEPT
    REJECT

```

(b) SETPACKING:

- *Given:* finite set M , set of sets $\mathcal{S} = \{S_1, \dots, S_n\}$ with $S_i \subseteq M$ for all $i \in \{1, \dots, n\}$, natural number $k \in \mathbb{N}_0$

- *Question:* Is there a set $\mathcal{S}' \subseteq \mathcal{S}$ with $|\mathcal{S}'| \geq k$, such that all sets in \mathcal{S}' are pairwise disjoint, i.e., for all $S_i, S_j \in \mathcal{S}'$ with $S_i \neq S_j$ it holds that $S_i \cap S_j = \emptyset$?

Solution:

Input: set M , set of sets \mathcal{S} , number k

```

chosen := ∅
remaining := S
WHILE |chosen| < k :
  IF remaining = ∅ :
    REJECT
  GUESS next ∈ remaining
  FOR set ∈ chosen :
    IF next ∩ set ≠ ∅ :
      REJECT
    chosen := chosen ∪ {next}
    remaining := remaining \ {next}
ACCEPT

```