
Theory of Computer Science

G. Röger
Spring Term 2020

University of Basel
Computer Science

Exercise Sheet 9 — Solutions

Exercise 9.1 (Turing machines; 2 marks)

We defined the tape of a Turing machine to be infinite in both directions. An alternative definition
uses a tape that is only infinite in one direction. Formally, this can be achieved by changing the
definition of a step and leaving all other definitions the same: in the definition on slide C7.16, we
change the third case from

〈ε, q, b1 . . . bn〉 `M 〈ε, q′,�cb2 . . . bn〉 if 〈q′, c, L〉 ∈ δ(q, b1), n ≥ 1

to
〈ε, q, b1 . . . bn〉 `M 〈ε, q′, cb2 . . . bn〉 if 〈q′, c, L〉 ∈ δ(q, b1), n ≥ 1.

Turing machines with this step model behave in the way as our Turing machines except if they
try to move the head to the left of the first position. In this case the head just remains on the
first position.
Using a doubly infinite tape does not make our Turing machines more expressive than machines
that use a tape that is only infinite in one direction. Explain how a given Turing machine M =
〈Q,Σ,Γ, δ, q0,�, E〉 with a two-sided infinite tape can be transformed to a machine M ′ with
single-sided infinite tape, such that M ′ accepts the same language as M .
Note: A proof sketch is sufficient here, but you should explain what kind of additional symbols and
states M ′ requires and what the main idea of the transformation is.

Solution:

There are different possible transformations and we explain two of them here. In the first case,
the whole tape content is shifted right by one position whenever the head would move over the
left end of the tape. In the other variant, the tape is “cut” to the left of the input into two singly
infinite tapes that are then interleaved, i.e., the new tape uses positions form the left tape and
positions from the right tape (represented from right to left) alternatingly.
Variant 1:

The main idea of the transformation is to move all tape content one step to right whenever the
read head reaches the first position. The technical problem with this is that we cannot use the
� to detect the end of the tape content. (The machine M could write a � in the middle of the
word. We thus use two new symbols S and E for the start and end of the current tape content.
At the beginning of M ′, we replace the first symbol by S and move the head one position to the
right. We then repeatedly replace the symbol that is currently under the head with the symbol
that was last replaced. To make this possible, we need a new state qx for every tape symbol x ∈ Σ.
When we read a y in state qx we replace it by an x and transition to state qy (this way, the next
symbol will be replaced by a y). We proceed this way until we reach the first � and append an
E . Afterwards, M ′ moves to the left until it reaches the start of the input (one position right
of S). With the last movement, we transition to the initial state of M . Instead of the original
configuration 〈ε, q0, w〉 we are now in the configuration 〈S , q0, wE 〉.
The machine M ′ now uses the same states as M but we extend the transition function so every
state has two additional outgoing edges for S and E . If a E is read, it is replaced by a � and we
write another E one position to the right. Afterwards, M ′ transitions back to the state where it
was before. Since we cannot “save” the state, we have to introduce a new state for this movement
for every state of M . After this movement M ′ is in the same state as before and now reads the
newly inserted �; exactly as M would in this situation. We were able to change the configuration
from 〈S α, q, β E 〉 to the configuration 〈S α, q, β�E 〉.

1

If we instead read a S , we have to move all tape content one position to the right. The symbol
S remains in the first position, we replace the second symbol with a �, the third symbol with
the second symbol, and so on. this movement works exactly as the movement at the start of M ′,
with the only exception that we now also move � and repeat until we moved E . Afterwards,
we move the head back left until we reach S and move one position to the right from there. In
this last step, we go back to the state that triggered the movement. As described above, we need
this structure once for every state of M , so we know which state to return to after the movement.
With this, we are able to change the configuration from 〈ε, q, S β E 〉 to 〈S , q,�βE 〉.
With these extensions, M ′ behaves exactly as M , only that it it sometimes interrupted, to move
the tape content and insert blanks.
Variant 2:

For the explanation of this idea, we rename the infinitely many tape positions in a way that p0
is the first position of the input and p1, p2, . . . are the positions to the right. Left of p0 are the
positions (from right to left) p−1, p−2,
The idea is to simulate the machine with TM with singly infinite tape that represents the original
tape content in the order p0, p−1, p1, p−2, p2, The main idea is that the head moves two
position to the left if it is on a positive index and should move to the left; and moves two position
to the right it it is on a non-negative position and should move to the right; etc. For negative
indices, we also need to reverse the direction. Of course, the indices do not really exist, so we have
to include them in the program of the TM.
To do so, we use six additional states q+, q−, q

R
+, q

R
−, q

L
+ and qL− for every state q of the original

TM. The subscript denotes whether we are currently moving on the positive or negative indices.
States with a superscript of R or L are used as intermediate states to show that an additional
step in the respective direction is necessary. The additional step then leads to the corresponding
state without superscript.
We have not covered the transition between positive and negative positions yet. To achieve that
correctly, we first shift the whole tape content one position to the right and mark the left end of
the tape with a new symbol # (using additional states similar to variant 1).
If we now are in a state qL+ (that is, we moved from a non-negative position to the right but
only moved one step so far), we now move an additional step the left and in state q+ if we do
not read #. Otherwise, we started the move in position 0 and now want to end up on position
−1 which is two positions to the right of the current cell. The TM thus moves the head there
using an additional state qR0 and then transitions to state q−. The change from negative positions
to the positive ones works similarly but an original movement to the right still first triggers two
movements to the left and only then, we test whether the head has to be moved back one step the
right to the non-negative positions.

Exercise 9.2 (Multiplication is Turing-computable; 2 marks)

Describe the main idea of a proof showing that multiplication of binary numbers is Turing-
computable, i.e., describe a Turing machine that computes mulcode for the function mul : N2

0 →p N0

with mul(n1, n2) = n1 · n2.
Note: You may use the fact that addition is Turing computable and a high-level description of the
Turing machine is sufficient.

Solution:

The main idea to initialize a number with 0 and then add the number n2 a total of n1 times. To
count how often we still have to add n2, we can reduce n1 by 1 after every iteration and stop when
it reaches 0. The individual components are all known from the lecture (addition of two numbers,
subtraction of 1) or easy to implement (test for 0, initialize part of the tape to 0).
The problem is that the computation of a Turing machine consumes its input and may write into
other areas outside of its input. For example, after the addition, the two added number are not
longer on the tape. We thus have to separate several areas on the tape. Every machine for a
suboperation is restricted to “its” part of the tape. If such an part is not large enough its size can
be increased by moving all other parts (see exercise 9.1). To execute the different operations one

2

after the other, our machine only has to write the correct inputs to the correct part other tape
and transition to the initial state of the specialized machine (e.g., the one for addition). Instead
of going to an accepting state, this machine is modified so it transitions to the next state of our
machine instead. in this case, for example, n1 should be reduced by 1 after each addition.

Exercise 9.3 (Composition of computable functions is computable; 2 marks)

Let f : Σ∗ → Σ∗ and g : Σ∗ → Σ∗ be Turing-computable partial functions for an alphabet Σ.
Show that the composition (f ◦ g) : Σ∗ → Σ∗ is also Turing-computable.
In general the composition of two functions is defined as (f ◦ g)(x) = f(g(x)). Specifically, the
value (f ◦ g)(x) is undefined if g(x) is undefined.

Solution:

General Ideas:
If f and g are Turing-computable, then there exist DTMs Mf and Mg which compute f(y) given
input y, respectively g(x) given input x.
If we start the DTMMg on an input x where g(x) is defined, then after termination the tape content
and the reading head are exactly in the configuration needed for the input for Mf (according to
the definition of functions computed by a DTM). Thus it is in this case sufficient to combine Mf

and Mg to a new DTM by changing all transitions of Mg which lead to an end state to the start
state of Mf . Thus the DTM first computes g(x) given input x. This is then the input y for f ,
which means the DTM computes f(y) = f(g(x)) = (f ◦ g)(x).
Technical Details:
We assume without restriction that the sets of states of Mf and Mg are disjoint (if not, we can
rename states as needed) and that the tape alphabets are identical otherwise we can unite the
two tape alphabets and arbitrarily choose all new transitions which need to be defined now (for
example when Mg reads a symbol only occurring in the tape alphabet of Mf). We can do this
arbitrarily because these transitions will never be used.
One technical problem arises though if Mg terminates in a configuration that does not represent
a valid computation (if the head is on a wrong position or illegal symbols are on the tape). In
this case the machine should not return a valid result, since (f ◦ g)(x) is undefined, but we cannot
guarantee this without further demands to Mf .
The easiest way to remove this problem is to modify Mg in a way to ensure that it cannot stop
in an invalid configuration. For example we could check at the end of the computation of Mg if
the tape content has a correct form. One difficulty we have to deal with is to recognize where the
visited part of the tape starts and ends. The easiest way to solve this is to never use � during the
calculation of Mg but instead write a new symbol �̂ which behaves exactly as �. Thus we ensure
that when checking the result of the computation � marks both ends of the visited tape. During
the final check we then replace �̂ with �.

Exercise 9.4 (Enumerable Functions; 2 marks)

Let Σ = {a, b}. Specify total and computable functions f : N0 → Σ∗ which recursively enumerate
the following languages. Additionally specify the function values f(0), f(1), . . . , f(5). You may
use all computable functions which were discussed in the lecture.

(a) L1 = {bna2n | n ∈ N0, n is even}

Solution:

fL1
(x) =

{
bxa2x if x even

ε else

x 0 1 2 3 4 5
fL1

(x) ε ε bbaaaa ε bbbbaaaaaaaa ε

(b) L2 = {w ∈ Σ∗ | a occurs in w exactly once}

3

Solution:

fL2(x) = bdecode1(x)abdecode2(x)

x 0 1 2 3 4 5
decode1(x) 0 0 1 0 1 2
decode2(x) 0 1 0 2 1 0
fL2

(x) a ab ba abb bab bba

Exercise 9.5 (Decidability; 2 marks)

Which of the following statements are true? Justify your answers with one or two sentences each.

(a) If L is decidable, then L is also finite.

Solution:

The statement is false. For example, the language of all words starting with a is infinite but
decidable.

(b) If L is regular then L is also decidable.

Solution:

The statement is true. For every regular language there is a DFA that can be simulated on
an input in finite time to decide if the word is in the language or not.

(c) If L1 and L2 are decidable, then L1 ∩ L2 is decidable.

Solution:

The statement is true. Since L1 and L2 are decidable, there are Turing machines that
compute their characteristic functions. Since those machines always stop, we can compute
them one after the other and return 1 if both of them return 1.

(d) If L is context-sensitive, then L is also semi-decidable.

Solution:

The statement is true. Every context-sensitive language is also a Type-0 language and we
have shown that these are exactly the semi-decidable languages.

4

