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Exercise 8.1 (Automata; 2 marks)

Write a summary of about the different types of automata covered in Chapter C. You do not have
to explain what a DFA/NFA/PDA/DTM/NTM is or how it is defined. Instead, your summary
should focus on the differences of the automata and how those differences influence the complexity
of the languages that can be accepted with them. For example, in what way can the automata
store information while reading the input, and how much information is necessary to recognize
certain languages? A good answer can be written in about half a page in LATEX.

Solution:

The following is one possible answer but since this is an open question, other answers are possible.

DFAs, NFAs, and PDAs can only read the input word once from left to right. That means that if
the language has requirements on different parts of the word, the automaton has to “remember”
some information about the word. For example, in the language {anbn | n ≥ 0} an automaton
has to remember the number of as to later compare them the number of bs. DFAs and NFAs
can only store information in their current state. Since the number of states is finite, this means
that they can only store a finite amount of data. Regular languages, for example, the language
of all words that end in b can be recognized by a DFA because they only require storing a finite
amount of data (in this case, whether the last symbol we read was a b). The pumping lemma is
build around this observation: if a language is regular and can be accepted by a DFA/NFA, then
it has to have repeatable parts because the DFA/NFA can only store a finite amount of data.
PDAs can store additional information on a stack. Compared to DFAs/NFAs this makes them
more powerful because the stack does not have a limit on the number of entries. Context-free
languages such as {anbn | n ≥ 0} can be recognized by PDAs: while reading the as, the PDA can
“count” them by adding elements to the stack. When reading the bs it can then compare their
number to the number of symbols on the stack by removing one symbol from the stack for every
b read. However, PDAs can only access their stack from the top, and they consume the elements
they read from it. For example, it is not possible to peek at the bottom of the stack without
removing all other elements. This means that non-context-free languages like {anbncn | n ≥ 0}
can not be accepted by PDAs.
Turing machines are even more powerful than PDAs because they can store an arbitrary amount
of information on their tape and can access any part of this information at any time without
consuming it. For every language that can be generated by a grammar there is a Turing machine
that accepts it, and it is the ability to store and access an arbitrary amount of information
that makes this possible. Later in the course, we will see that Turing machines still have their
limitations.

Exercise 8.2 (Deterministic Turing machines; 2+2+2+2 marks)

In this exercise you should implement a simulator for a deterministic Turing machine.
You can find a basic framework for this on the lecture homepage. Implement the given methods
and chose appropriate private fields for the classes. Only implement the places marked with
// TODO in the code; do not add any additional methods, classes or public fields.

(a) Implement the following methods in the class Tape that represents the Turing machine’s
tape which is infinite in both directions and the position of the read/write head:
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The constructor Tape(word, blank) accepts the word that is on the tape initially and the
blank symbol that should be used. The read/write head initially is over the first symbol of
the word.

The method read() should return the symbol under the read/write head.

The method write(symbol) should write symbol on the tape to the current position of the
read/write head.

The methods moveLeft() and moveRight() should move the head one position to the left
or right respectively.

The method dumpAlpha() should print out the part of the tape that is left of the current
position of the read/write head (excluding the current position).

The method dumpBeta() should print out the part of the tape that is right of the current
position of the read/write head (including the current position).

The method usedSpace() should return the size (the number of tape positions) of the tape
that was used so far.

(b) Implement the constructor TuringMachine(Q, Sigma, Gamma, delta, q0, blank, E) where
the parameters correspond to the normal elements of a Turing maschine. During construc-
tion make sure that the Turing machine is specified correctly: is delta a total function?
Is Sigma a subset of Gamma? Is the blank in Gamma but not in Sigma? Is E a subset of Q?
Throw an InvalidSpecificationException, if the specification is incorrect.

(c) Implement the remaining methods in the class TuringMachine:

initialize(word) should initialize the Turing machine, i.e., create the initial configura-
tion. Make sure that only symbols from the input alphabet occur in word. Throw a
InvalidSpecificationException if this is not the case.

step() should execute one step of the Turing machine. Throw a RuntimeException if the
machine is not initialized or is in a final state.

The method dumpConfiguration() should print out the current configuration of the Turing
machine.

The method dumpStatistics() should print out how many steps where simulated so far
and how much space was used on the tape so far.

run(maxSteps) should run the Turing machine. The machine should only stop if it reaches a
final state or more than maxSteps steps were executed. This is useful to test the machine on a
word where the machine does not terminate. The method run() calls run(Integer.MAX VALUE)

to simulate an unrestricted run. Call dumpConfiguration() at the start of the simulation
and after every step, and call dumpStatistics() at the end of the simulation.

(d) Consider the following turing machine.
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q0 q1 q2 q3

q4

q5

q6

b→ b,N
c→ c,N
x→ x,N

�→ �,N

a→ x,R

a→ a,R
x→ x,R
c→ c,N
�→ �,N

b→ x,R

b→ b,R
x→ x,R
a→ a,N
�→ �,N

c→ x,N

x→ x,L
b→ b,L
c→ c,N

a→ a,L

�→ �,R

x→ x,R

a→ a,L
b→ b,L
c→ c,L
�→ �,L

x→ x,R
a→ a,N
b→ b,N
c→ c,N

�→ �,N

Implement the main method in the class SimulateTM that should create an object of the
class TuringMachine representing the Turing machine above. Test different inputs for the
machine, containing at least:

• the empty word, and

• two words that are not in the language accepted by the Turing machine (but not the
empty word or aabbcc), and

• two words that are not in the language accepted by the Turing machine.

Print out the configuration in every step of the simulation. For words that are not in the
language, use a small value for maxSteps that already shows that the Turing machine will
never terminate. For words that are in the language, use run() without a parameter.

You can check your implementation with the input aabbcc: the Turing machine requires 29
steps and 8 tape cells for this input.
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