

Theory of Computer Science

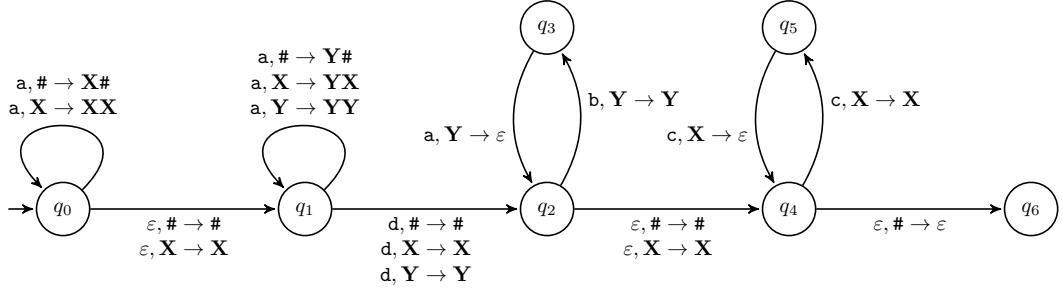
G. Röger
Spring Term 2020

University of Basel
Computer Science

Exercise Sheet 7 — Solutions

Exercise 7.1 (Push-down Automata; 2+2 marks)

Consider the push-down automaton (PDA) $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \# \rangle$ with $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$, $\Sigma = \{a, b, c, d\}$, $\Gamma = \{X, Y, \#\}$, and the following transition function δ :



(a) Show that the automaton accepts the word $aaadbabacc$ by specifying an accepting sequence of configurations.

Solution:

$$\begin{aligned}
 \langle q_0, aaadbabacc, \# \rangle &\vdash_M \langle q_0, aadbabacc, X\# \rangle \\
 &\vdash_M \langle q_1, aadbabacc, X\# \rangle \\
 &\vdash_M \langle q_1, adbabacc, YX\# \rangle \\
 &\vdash_M \langle q_1, dbabacc, YYX\# \rangle \\
 &\vdash_M \langle q_2, babacc, YYX\# \rangle \\
 &\vdash_M \langle q_3, abacc, YYX\# \rangle \\
 &\vdash_M \langle q_2, bacc, YX\# \rangle \\
 &\vdash_M \langle q_3, acc, YX\# \rangle \\
 &\vdash_M \langle q_2, cc, X\# \rangle \\
 &\vdash_M \langle q_4, cc, X\# \rangle \\
 &\vdash_M \langle q_5, c, X\# \rangle \\
 &\vdash_M \langle q_4, \varepsilon, \# \rangle \\
 &\vdash_M \langle q_6, \varepsilon, \varepsilon \rangle
 \end{aligned}$$

(b) What language does this automaton accept?

Solution:

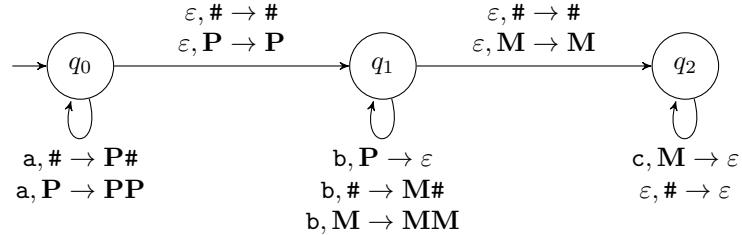
$$\mathcal{L}(M) = \{a^i a^j d (ba)^j c^{2i} \in \Sigma^* \mid i, j \geq 0\}$$

Exercise 7.2 (Push-down Automata; 2 marks)

Consider language $L = \{a^i b^j c^k \mid i, j, k \geq 0, j = i + k\}$. Specify a push-down automaton (PDA) that accepts L . Remember to specify a complete description with all components. You can specify the transition function δ as a transition diagram.

Solution:

$M = \langle \{q_0, q_1, q_2\}, \{a, b, c\}, \{M, P, \#\}, \delta, q_0, \#\rangle$, where δ is defined as follows:



Note: This exercise was part of the exam in 2018 and gave 5 out of 80 marks there.

Exercise 7.3 (Turing machines; 2 marks)

A *deterministic* Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \square, E \rangle$ is defined like a non-deterministic Turing machine, but with $\delta : (Q \setminus E) \times \Gamma \rightarrow Q \times \Gamma \times \{\text{L, R, N}\}$. This means that for every non-end state and every symbol from Γ there is exactly one transition (specifying the change of the state and on the tape and the movement of the head).

A Turing machine M that accepts the language

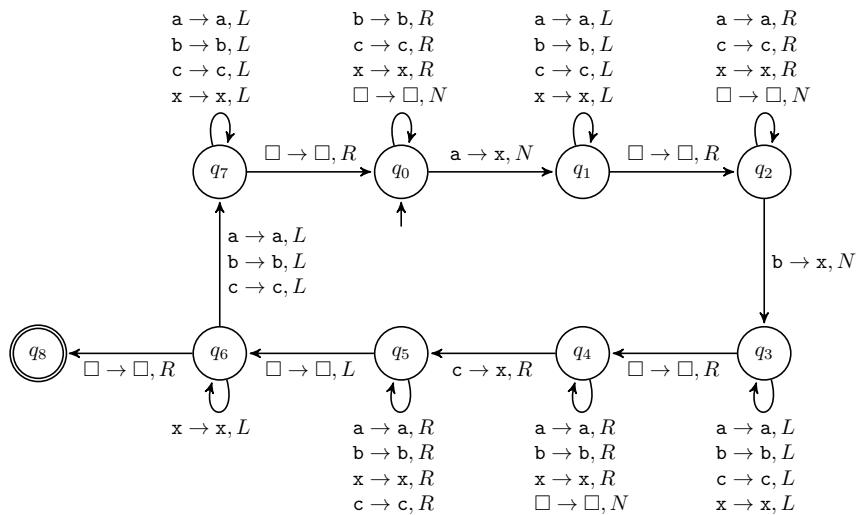
$$L = \{w \in \{a, b, c\}^+ \mid w \text{ contains the same number of } a, b, \text{ and } c\}$$

works with the following loop:

M looks for an a on the tape and replaces it with an x . Then it searches a b on the tape and replaces it with an x . Then it searches a c on the tape and replaces it with an x . If any symbol is not found in this way, M enters an endless loop. Otherwise, it checks if all symbols on the tape have been replaced with x . If this is the case, it moves to an accepting state, otherwise the loop starts again.

Specify a transition diagram for a *deterministic* Turing machine with this behavior. Explain your solution by describing which part of the Turing machine is responsible for which part of the loop.

Solution:



State q_0 starts at the beginning of the input and reads the word from left to right until the first a . All symbols remain unchanged until the first a is replaced with an x at which time the TM

changes to state q_2 . If state q_0 reaches the end of the word without reading an **a**, the TM stay in this state forever.

State q_1 moves the read head back to the beginning of the word and the TM transitions to state q_2 . This state works analogously to q_0 and replaces the first **b** with an **x**. After that q_3 moves the head back to the beginning of the word (analogously to q_1) and q_4 replaces the first **c** with an **x** (analogously to q_0).

Now q_5 moves the head to the end of the input (analogously to q_1 but in the other direction). After that, state q_6 reads the word from right to left. If it only reads **x**, the TM transitions to the accepting state q_8 . Otherwise, the TM transitions to state q_7 , which moves the head back to the start of the input (analogously to q_1).