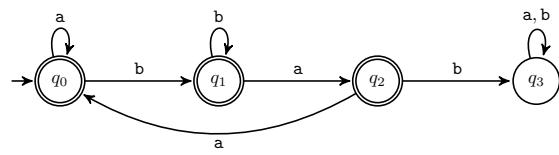


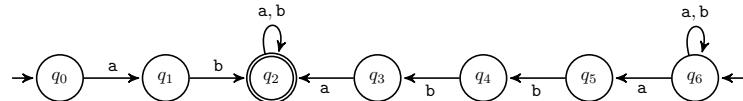
Theory of Computer Science

G. Röger
Spring Term 2020

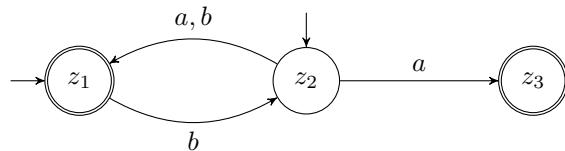

University of Basel
Computer Science

Exercise Sheet 5 — Solutions

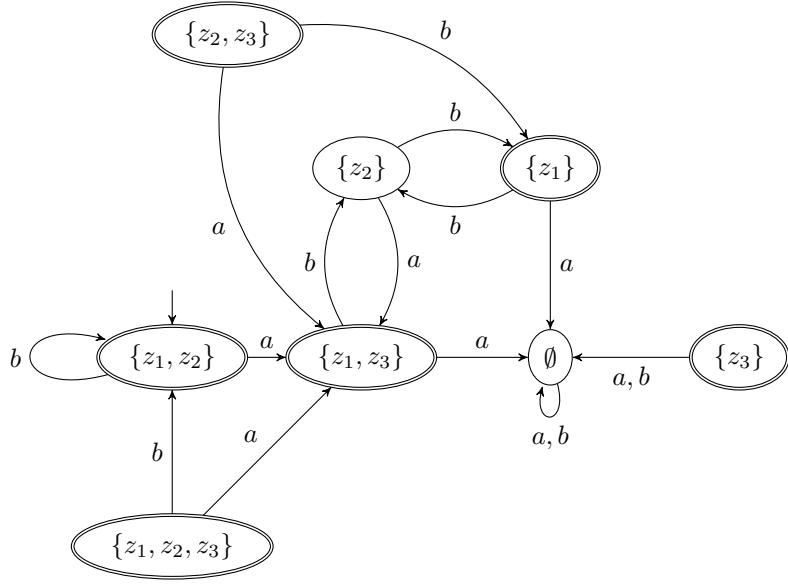
Exercise 5.1 (DFA and NFA, 1.5+1.5 marks)


(a) Specify a deterministic finite automaton that accepts the language of all words over $\Sigma = \{a, b\}$ that do *not* contain **bab** (e.g., the word **ababa** is not contained).

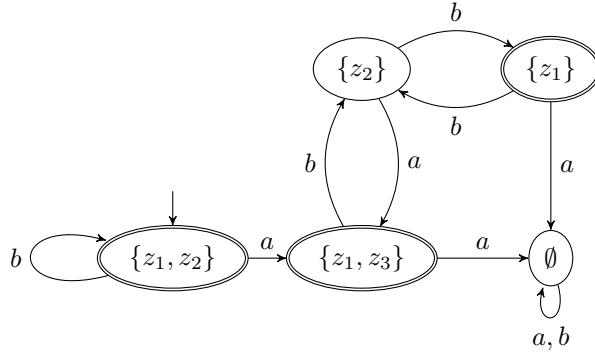
Solution:


(b) Specify a non-deterministic finite automaton that accepts the language of those words over $\Sigma = \{a, b\}$ that start with **ab** or contain **abba**.

Solution:


Exercise 5.2 (DFA and NFA, 2 marks)

Specify a DFA that is equivalent to the following NFA.



Solution:

The following DFA is constructed by following the algorithm from the lecture (slide 28/35 from handout version of slide set C2).

This DFA still contains some unreachable states. The solution is easier to follow if we remove them.

Exercise 5.3 (Regular Expressions, 2 marks)

Consider the following regular expressions over the alphabet $\Sigma = \{0, 1\}$. For each regular expression, specify two words that are in the corresponding language and two words that are not in the corresponding language.

(a) $110 1001$	(c) $(0\varepsilon 1(0 1))(0 1)^*$
(b) $1^*(01^*01^*)^*$	(d) $1(\varepsilon 0) 0\emptyset 1$

Solution:

(a) $L(110 1001) = \{110, 1001\}$ The words 110 and 1001 are in the language. Examples for words that are not in the language are 1 and 0110.	(c) $L((0\varepsilon 1(0 1))(0 1)^*) = \Sigma^* \setminus \{\varepsilon, 1\}$ The words 0011 and 0001 are examples for words in the language. The words that are not in the language are ε and 1.
(b) $L(1^*(01^*01^*)^*) = \{w \mid w \text{ contains an even number of 0s}\}$ Examples for words in the language are 00 and 0101010. Examples for words that are not in the language are 10 and 010101.	(d) $L(1(\varepsilon 0) 0\emptyset 1) = \{1, 01, 001, 0001\}$ The words 1, 01, 001, and 0001 are examples for words in the language. The words that are not in the language are ε and 0.

(d) $L(1(\varepsilon|0)|0\emptyset 1) = \{1, 10\}$

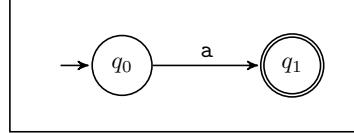
The words 1 and 10 are in the language. Examples for words that are not in the language are ε and 0.

Exercise 5.4 (Regular Expressions, 1 mark)

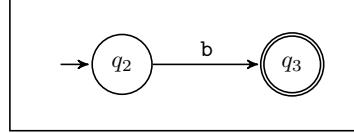
Specify a regular expression that describes the language

$$L = \{w \in \{0, 1\}^* \mid |w| \geq 2, w \text{ ends with 0 and contains at most two 0s}\}.$$

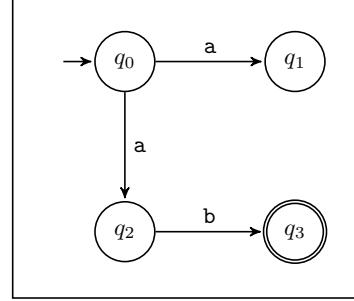
Solution:

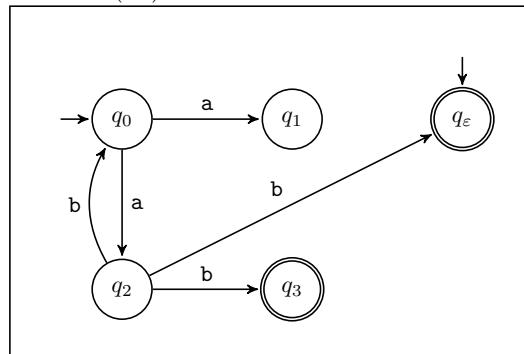

$$L = \mathcal{L}(1^*(1|0)1^*0)$$

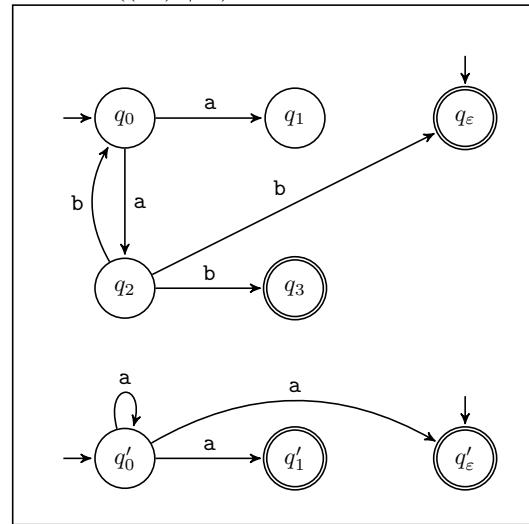
Exercise 5.5 (NFAs for Regular Expressions; 2 Points)

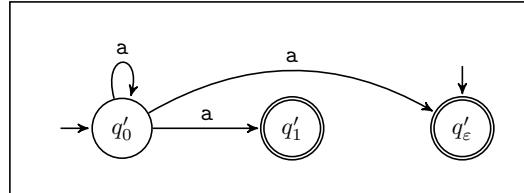

Construct an NFA for the regular expression $((ab)^*|a^*)$ over the alphabet $\Sigma = \{a, b\}$. Use the construction rules from the lecture (chapter C3 slides 13–16 on handout version) and please specify all intermediate steps, i.e., NFAs for a , b , ab , $(ab)^*$, a^* and $((ab)^*|a^*)$.

Solution:


NFA for a :


NFA for b :


NFA for ab :


NFA for $(ab)^*$:

NFA for $((ab)^*|a^*)$:

NFA for a^* :

