Theory of Computer Science

G. Röger Spring Term 2020

Exercise Sheet 4 — Solutions

Exercise 4.1 (Predicate logic, 2 + 2 marks)

(a) Show for arbitrary predicate logic formulas φ and ψ that

$$(\forall x\varphi \lor \forall x\psi) \models \forall x(\varphi \lor \psi).$$

Solution:

Let \mathcal{I} be an interpretation and α be a variable assignment such that $\mathcal{I}, \alpha \models (\forall x \varphi \lor \forall x \psi)$. By the semantics of the disjunction, it is the case that $\mathcal{I}, \alpha \models \forall x \varphi$ or $\mathcal{I}, \alpha \models \forall x \psi$.

Case 1: $\mathcal{I}, \alpha \models \forall x \varphi$

In this case it is true for all objects u in the universe that $\mathcal{I}, \alpha[x := u] \models \varphi$. But then $\mathcal{I}, \alpha[x := u] \models (\varphi \lor \chi)$ for arbitrary formulas χ by the semantics of the disjunction. With $\chi := \psi$, we get $\mathcal{I}, \alpha[x := u] \models (\varphi \lor \psi)$ for all objects u of the universe. We can conclude with the semantics of \forall that $\mathcal{I}, \alpha \models \forall x(\varphi \lor \psi)$.

Case 2: $\mathcal{I}, \alpha \models \forall x \varphi$

We can argue analogously to case 1 that $\mathcal{I}, \alpha \models \forall x (\varphi \lor \psi)$.

Hence, every model of $(\forall x \varphi \lor \forall x \psi)$ is a model of $\forall x (\varphi \lor \psi)$ and we conclude that $(\forall x \varphi \lor \forall x \psi) \models \forall x (\varphi \lor \psi)$.

(b) Show that in general it is *not* the case that

$$(\forall x\varphi \lor \forall x\psi) \equiv \forall x(\varphi \lor \psi)$$

Specify a counter example with the following signature: $S = \langle \{x\}, \{\}, \{\}, \{P,Q\} \rangle$, where ar(P) = ar(Q) = 1.

Solution:

Consider interpretation $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with $U = \{u_1, u_2\}$, $P^{\mathcal{I}} = \{u_1\}$ and $Q^{\mathcal{I}} = \{u_2\}$. For arbitrary variable assignments α , it holds that $\mathcal{I}, \alpha \models \forall x(P(x) \lor Q(x))$ because $\mathcal{I}, \alpha[x := u_1] \models P(x)$ and $\mathcal{I}, \alpha[x := u_2] \models Q(x)$. However, $\mathcal{I}, \alpha \not\models \forall xP(x)$ because $\mathcal{I}, \alpha[x := u_2] \not\models P(x)$ and – analogously – $\mathcal{I}, \alpha \not\models \forall xQ(x)$ because $\mathcal{I}, \alpha[x := u_1] \not\models Q(x)$. Hence we can conclude that $\mathcal{I}, \alpha \not\models (\forall xP(x) \lor \forall xQ(x))$ and have seen an example, where a model of $\forall x(P(x) \lor Q(x))$ is not a model of $(\forall xP(x) \lor \forall xQ(x))$.

With $\varphi = P(x)$ and $\psi = Q(x)$, we see that in general it is not the case that $\forall x(\varphi \lor \psi) \models (\forall x \varphi \lor \forall x \psi)$ and hence also the logical equivalence cannot hold in general.

Exercise 4.2 (Predicate logic, 1 mark)

Use equivalence transformations to bring the following formula in negation normal form. For this purpose, move negation symbols inwards by using DeMorgan's rule or equivalence $\neg \forall x \varphi \equiv \exists x \neg \varphi$ and $\neg \exists x \varphi \equiv \forall x \neg \varphi$, or eliminate them with double negation.

$$\varphi = \neg \forall x ((P(x) \lor \neg Q(x, \mathbf{c})) \land \exists y (P(x) \to Q(y, x)))$$

University of Basel Computer Science

Solution:

$$\begin{split} \varphi &= \neg \forall x ((P(x) \lor \neg Q(x, c)) \land \exists y (P(x) \to Q(y, x))) \\ &\equiv \exists x \neg ((P(x) \lor \neg Q(x, c)) \land \exists y (P(x) \to Q(y, x))) \\ &\equiv \exists x (\neg (P(x) \lor \neg Q(x, c)) \lor \neg \exists y (P(x) \to Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land \neg \neg Q(x, c)) \lor \neg \exists y (P(x) \to Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land Q(x, c)) \lor \neg \exists y (P(x) \to Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land Q(x, c)) \lor \forall y \neg (P(x) \to Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land Q(x, c)) \lor \forall y \neg (\neg P(x) \lor Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land Q(x, c)) \lor \forall y (\neg \neg P(x) \land \neg Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land Q(x, c)) \lor \forall y (P(x) \land \neg Q(y, x))) \\ &\equiv \exists x ((\neg P(x) \land Q(x, c)) \lor \forall y (P(x) \land \neg Q(y, x))) \end{split}$$

Exercise 4.3 (Formal languages and grammars, 1+3+1 marks) Consider the following formal language over {a,b,c}:

$$L = \{\mathbf{a}^n \mathbf{b}^m \mathbf{c}^{2n} \mid n \ge 0, m \ge 0\}$$

(a) Is ε an element of L? Justify your answer.

Solution:

Yes, L contains the word $\mathbf{a}^n \mathbf{b}^m \mathbf{c}^{2n}$ for any $n \in \mathbb{N}_0$ and $m \in \mathbb{N}_0$, in particular for n = 0 and m = 0 the word $\mathbf{a}^0 \mathbf{b}^0 \mathbf{c}^{2 \cdot 0} = \mathbf{a}^0 \mathbf{b}^0 \mathbf{c}^0 = \varepsilon$.

(b) Specify a *complete description* of a formal grammar G that generates L (i.e., $\mathcal{L}(G) = L$). A formal grammar is a four tuple $G = \langle \Sigma, V, P, S \rangle$, remember to define all components of this tuple.

Solution:

 $G = (\Sigma, V, P, S)$ with $\Sigma = \{a, b, c\}, V = \{S, A, B, C\}$ and the following rules in the set P:

(c) Which types (in the Chomsky-Hierarchy) is your formal grammar part of? You don't have to prove your answers.

Solution:

The above specified formal grammar is part of the following types in the Chomsky-Hierarchy:

- Type 0, since *all* formal grammars are of Type 0.
- Type 1, since for all rules in P (except for $S \to \varepsilon$) the left side is shorter or equally long as the right side. Although the right of $S \to \varepsilon$ is shorter than the left side (since ε has length 0), G is still of Type 1 since S is the start symbol and never occurs in the right side of any rule.

The grammar is not of Type 2, since for example the left side of the rule ACC \rightarrow ABCC does not consist of a single variable. Since it is not of Type 2, it cannot be of Type 3 either.