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Exercise 4.1 (Predicate logic, 2 + 2 marks)

(a) Show for arbitrary predicate logic formulas ϕ and ψ that

(∀xϕ ∨ ∀xψ) |= ∀x(ϕ ∨ ψ).

Solution:

Let I be an interpretation and α be a variable assignment such that I, α |= (∀xϕ ∨ ∀xψ).
By the semantics of the disjunction, it is the case that I, α |= ∀xϕ or I, α |= ∀xψ.

Case 1: I, α |= ∀xϕ
In this case it is true for all objects u in the universe that I, α[x := u] |= ϕ. But then
I, α[x := u] |= (ϕ ∨ χ) for arbitrary formulas χ by the semantics of the disjunction. With
χ := ψ, we get I, α[x := u] |= (ϕ ∨ ψ) for all objects u of the universe. We can conclude
with the semantics of ∀ that I, α |= ∀x(ϕ ∨ ψ).

Case 2: I, α |= ∀xϕ
We can argue analogously to case 1 that I, α |= ∀x(ϕ ∨ ψ).

Hence, every model of (∀xϕ∨∀xψ) is a model of ∀x(ϕ∨ψ) and we conclude that (∀xϕ∨∀xψ) |=
∀x(ϕ ∨ ψ).

(b) Show that in general it is not the case that

(∀xϕ ∨ ∀xψ) ≡ ∀x(ϕ ∨ ψ)

Specify a counter example with the following signature:S = 〈{x}, {}, {}, {P,Q}〉, where
ar(P ) = ar(Q) = 1.

Solution:

Consider interpretation I = 〈U, ·I〉 with U = {u1, u2}, P I = {u1} and QI = {u2}. For
arbitrary variable assignments α, it holds that I, α |= ∀x(P (x) ∨ Q(x)) because I, α[x :=
u1] |= P (x) and I, α[x := u2] |= Q(x). However, I, α 6|= ∀xP (x) because I, α[x := u2] 6|=
P (x) and – analogously – I, α 6|= ∀xQ(x) because I, α[x := u1] 6|= Q(x). Hence we can
conclude that I, α 6|= (∀xP (x) ∨ ∀xQ(x)) and have seen an example, where a model of
∀x(P (x) ∨Q(x)) is not a model of (∀xP (x) ∨ ∀xQ(x)).

With ϕ = P (x) and ψ = Q(x), we see that in general it is not the case that ∀x(ϕ ∨ ψ) |=
(∀xϕ ∨ ∀xψ) and hence also the logical equivalence cannot hold in general.

Exercise 4.2 (Predicate logic, 1 mark)

Use equivalence transformations to bring the following formula in negation normal form. For this
purpose, move negation symbols inwards by using DeMorgan’s rule or equivalence ¬∀xϕ ≡ ∃x¬ϕ
and ¬∃xϕ ≡ ∀x¬ϕ, or eliminate them with double negation.

ϕ = ¬∀x((P (x) ∨ ¬Q(x, c)) ∧ ∃y(P (x)→ Q(y, x)))
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Solution:

ϕ = ¬∀x((P (x) ∨ ¬Q(x, c)) ∧ ∃y(P (x)→ Q(y, x)))

≡ ∃x¬((P (x) ∨ ¬Q(x, c)) ∧ ∃y(P (x)→ Q(y, x)))

≡ ∃x(¬(P (x) ∨ ¬Q(x, c)) ∨ ¬∃y(P (x)→ Q(y, x)))

≡ ∃x((¬P (x) ∧ ¬¬Q(x, c)) ∨ ¬∃y(P (x)→ Q(y, x)))

≡ ∃x((¬P (x) ∧Q(x, c)) ∨ ¬∃y(P (x)→ Q(y, x)))

≡ ∃x((¬P (x) ∧Q(x, c)) ∨ ∀y¬(P (x)→ Q(y, x)))

≡ ∃x((¬P (x) ∧Q(x, c)) ∨ ∀y¬(¬P (x) ∨Q(y, x)))

≡ ∃x((¬P (x) ∧Q(x, c)) ∨ ∀y(¬¬P (x) ∧ ¬Q(y, x)))

≡ ∃x((¬P (x) ∧Q(x, c)) ∨ ∀y(P (x) ∧ ¬Q(y, x)))

Exercise 4.3 (Formal languages and grammars, 1+3+1 marks)

Consider the following formal language over {a, b, c}:

L = {anbmc2n | n ≥ 0,m ≥ 0}

(a) Is ε an element of L? Justify your answer.

Solution:

Yes, L contains the word anbmc2n for any n ∈ N0 and m ∈ N0, in particular for n = 0 and
m = 0 the word a0b0c2·0 = a0b0c0 = ε.

(b) Specify a complete description of a formal grammar G that generates L (i.e., L(G) = L). A
formal grammar is a four tuple G = 〈Σ, V, P, S〉, remember to define all components of this
tuple.

Solution:

G = (Σ, V, P, S) with Σ = {a, b, c}, V = {S,A,B,C} and the following rules in the set P :

S→ ε S→ ACC S→ B ACC→ AACCCC ACC→ ABCC B→ BB

A→ a B→ b C→ c

(c) Which types (in the Chomsky-Hierarchy) is your formal grammar part of? You don’t have
to prove your answers.

Solution:

The above specified formal grammar is part of the following types in the Chomsky-Hierarchy:

• Type 0, since all formal grammars are of Type 0.

• Type 1, since for all rules in P (except for S→ ε) the left side is shorter or equally long
as the right side. Although the right side of S→ ε is shorter than the left side (since ε
has length 0), G is still of Type 1 since S is the start symbol and never occurs in the
right side of any rule.

The grammar is not of Type 2, since for example the left side of the rule ACC → ABCC
does not consist of a single variable. Since it is not of Type 2, it cannot be of Type 3 either.
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