
Theory of Computer Science

G. Röger
Spring Term 2020

University of Basel
Computer Science

Exercise Sheet 2 — Solutions

Exercise 2.1 (Equivalences; 1.5+1.5 marks)

(a) Transform the following formula into CNF by applying the equivalence rules shown in the
lecture. For each step, only apply one equivalence rule and also specify it.

φ = (¬(A↔ ¬B)→ C)

Solution:

φ = (¬(A↔ ¬B)→ C)

≡ (¬¬(A↔ ¬B) ∨ C) (→-Elimination)

≡ ((A↔ ¬B) ∨ C) (Double negation)

≡ (((A→ ¬B) ∧ (¬B → A)) ∨ C) (↔-Elimination)

≡ (((¬A ∨ ¬B) ∧ (¬B → A)) ∨ C) (→-Elimination)

≡ (((¬A ∨ ¬B) ∧ (¬¬B ∨A)) ∨ C) (→-Elimination)

≡ (((¬A ∨ ¬B) ∧ (B ∨A)) ∨ C) (Double negation)

≡ (C ∨ ((¬A ∨ ¬B) ∧ (B ∨A))) (Commutativity)

≡ ((C ∨ (¬A ∨ ¬B)) ∧ (C ∨ (B ∨A))) (Distributivity)

(b) Prove that the following formula is a tautology by showing that φ ≡ (A∨¬A) holds. Use the
equivalence rules from the lecture, only apply one rule for each step and specify the applied
rule.

φ = (A ∨ (¬(A ∧ ¬(¬A ∧ C)) ∨ (A ∧B)))

Solution:

φ = (A ∨ (¬(A ∧ ¬(¬A ∧ C)) ∨ (A ∧B)))

≡ (A ∨ ((A ∧B) ∨ ¬(A ∧ ¬(¬A ∧ C)))) (Commutativity)

≡ ((A ∨ (A ∧B)) ∨ ¬(A ∧ ¬(¬A ∧ C))) (Associativity)

≡ (A ∨ ¬(A ∧ ¬(¬A ∧ C))) (Absorption)

≡ (A ∨ (¬A ∨ ¬¬(¬A ∧ C))) (De Morgan)

≡ (A ∨ (¬A ∨ (¬A ∧ C))) (Double negation)

≡ (A ∨ ¬A) (Absorption)

Exercise 2.2 (Inference; 1+1+1 marks + 1 bonus mark)

You’ll find a Java program on the lecture website that checks proofs formulated in propositional
logic. Use this program to prove the following statements. For a statement of the form WB |= ϕ
write a text file containing a derivation that only uses formulas from WB as assumptions and that
has ϕ in its last line. An example for this is contained in the file proof.txt.
The program checks WB ` ϕ. Since the proof system used by the program is correct, this implies
WB |= ϕ.

1

(a) {A,B} |= ((A ∧B) ∨ C)

Solution:

A | Assumption |
B | Assumption |
(A /\ B) | AndIntro | 1 , 2
((A /\ B) \/ C) | OrIntroLe f t | 3

(b) {(A ∧B)} |= (A→ (B ∨ C))

Solution:

(A /\ B) | Assumption |
B | AndElimLeft | 1
(B \/ C) | OrIntroLe f t | 2
(˜A \/ (B \/ C)) | OrIntroRight | 3
(A −> (B \/ C)) | I m p l i c a t i o n I n t r o | 4

(c) {((A ∨B)→ (A→ C)), A} |= C

Solution:

A | Assumption |
(A \/ B) | OrIntroLe f t | 1
((A \/ B) −> (A −> C)) | Assumption |
(A −> C) | ModusPonens | 2 , 3
C | ModusPonens | 1 , 4

(d) {((C ∨D)↔ (A ∧B)),¬E, (((A ∧B) ∧ (C ∨D))→ E)} |= ¬(A ∧B)
For this exercise, extend the calculus by a new rule negation-introduction:

(ϕ→ ψ), (ϕ→ ¬ψ)

¬ϕ

Solution:

((C \/ D) <−> (A /\ B)) | Assumption |
((A /\ B) −> (C \/ D)) | Bi imp l i ca t i onE l imLe f t | 1
˜E | Assumption |
(((A /\ B) /\ (C \/ D)) −> E) | Assumption |
˜((A /\ B) /\ (C \/ D)) | ModusTollens | 3 , 4
(˜ (A /\ B) \/ ˜(C \/ D)) | DeMorgan2LeftToRight | 5
((A /\ B) −> ˜(C \/ D)) | I m p l i c a t i o n I n t r o | 6
˜(A /\ B) | Negat ionIntro | 2 , 7

The additional rule has to be added to Calculus.java with the following line:

addRule (” Negat ionIntro ” , ”(X −> Y) , (X −> ˜Y) |− ˜X”) ;

2

(e) Bonus exercise: To show that a calculus is correct, we have to prove that all rules are correct.
Show the correctness of the rule negation-introduction

Solution:

Let I be a model of (ϕ → ψ) and (ϕ → ¬ψ). From I |= (ϕ → ψ) we know that I 6|= ϕ
or I |= ψ must be true. If we assume I |= ϕ then I |= ψ must be true (*). But from
I |= (ϕ → ¬ψ) we know that I 6|= ϕ or I |= ¬ψ must hold. Since I |= ϕ is true according
to our assumption, I |= ¬ψ must be true. This is a contradiction to (*). The assumption
(I |= ϕ) must be wrong and we have I |= ¬ϕ.

Since all models I of (ϕ→ ψ) and (ϕ→ ¬ψ) are also models of I |= ¬ϕ, we conclude that
the rule is correct: {(ϕ→ ψ), (ϕ→ ¬ψ)} |= ¬ϕ.

Note on the submission process: please create one text file for each exercise part which contains
the derivation. The program must be able to parse the file and accept the derivation as correct.
The new rule (negation-introduction) requires a new line in the program. Copy this line on your
regular submission. The bonus exercise cannot be solved with the program.

Exercise 2.3 (Refutation Theorem; 2 marks)

Prove the refutation theorem, that is, show for any set of formulas KB and any formula ϕ that

KB ∪ {ϕ} is unsatisfiable if and only if KB |= ¬ϕ.

Solution:

“⇒”: If KB ∪ {ϕ} is unsatisfiable then there is no interpretation I with I |= KB and I |= ϕ.
Hence for every I with I |= KB it holds that I 6|= ϕ and we conclude that KB |= ¬ϕ.

“⇐”: If KB |= ¬ϕ then it holds for all I with I |= KB that I |= ¬ϕ and hence I 6|= ϕ. Therefore
there is no interpretation with I |= KB ∪ {ϕ}, so KB ∪ {ϕ} is unsatisfiable.

Exercise 2.4 (Refutation Completeness; 2 marks)

Let P be a computer program that takes a set of propositional logic formulas as input and returns
whether this set of formulas is unsatisfiable.
How can you use P to decide for a knowledge base KB and a propositional logic formula ϕ whether

(a) KB is satisfiable?

Solution:

We run the program for input KB. Then KB is satisfiable iff the program returns that the
input is not unsatisfiable.

(b) KB |= ϕ?

Solution:

We run the program on input KB∪{¬ϕ}. According to the refutation theorem it holds that
KB |= ϕ iff the program returns that the input is unsatisfiable.

(c) KB is a tautology?

Solution:

A knowledge base KB is a tautology iff every interpretation is a model of every formula
ϕ ∈ KB and therefore also a model of the conjunction (

∧
ϕ∈KB ϕ). Hence, KB is a tautology

iff there is no interpretation I such that I 6|= (
∧

ϕ∈KB ϕ). This means KB is a tautology
iff ¬(

∧
ϕ∈KB ϕ) is unsatisfiable. Thus KB is a tautology iff the program returns that input

{¬(
∧

ϕ∈KB ϕ)} is not unsatisfiable.

3

(d) KB is falsifiable?

Solution:

A knowledge base is falsifiable iff it is not valid. Whether it is valid can be decided as
described in part c.

4

