

Theory of Computer Science

G. Röger
Spring Term 2020

University of Basel
Computer Science

Exercise Sheet 1 — Solutions

Exercise 1.1 (Structural Induction; 3 marks)

We define two functions over binary trees (as presented in the lecture): $height : \mathcal{B} \rightarrow \mathbb{N}_0$ maps a binary tree $B \in \mathcal{B}$ to its height and $leaves : \mathcal{B} \rightarrow \mathbb{N}_0$ maps a binary tree $B \in \mathcal{B}$ to the number of its leaves.

- $height(\square) = 0$
- $height((B_L, \bigcirc, B_R)) = \max(height(B_L), height(B_R)) + 1$
- $leaves(\square) = 1$
- $leaves((B_L, \bigcirc, B_R)) = leaves(B_L) + leaves(B_R)$

Prove the following property for all binary trees $B \in \mathcal{B}$ by structural induction:

$$leaves(B) \leq 2^{height(B)}.$$

Solution:

We prove the statement by induction over the structure of binary trees.

Induction basis: The property is true for the base case $B = \square$:

$$leaves(\square) = 1 = 2^{1-1} = 2^{height(\square)}.$$

Induction hypothesis:

$leaves(B_L) \leq 2^{height(B_L)}$ and $leaves(B_R) \leq 2^{height(B_R)}$ for binary trees B_L and B_R .

Induction step from B_L and B_R to $B = (B_L, \bigcirc, B_R)$:

$$\begin{aligned} leaves((B_L, \bigcirc, B_R)) &= leaves(B_L) + leaves(B_R) \\ &\stackrel{(IV)}{\leq} 2^{height(B_L)} + 2^{height(B_R)} \\ &\leq 2^{\max(height(B_L), height(B_R))} + 2^{\max(height(B_L), height(B_R))} \\ &= 2 \left(2^{\max(height(B_L), height(B_R))} \right) \\ &= 2^{\max(height(B_L), height(B_R)) + 1} \\ &= 2^{height((B_L, \bigcirc, B_R))} \end{aligned}$$

Exercise 1.2 (Formalization in Propositional Logic; 0.5+0.5+0.5+0.5 marks)

Formalize the following statements as propositional formulas. In order to do so, also define appropriate atomic propositions. Take care to fully parenthesize all formulas.

- (a) If it does not rain, it is warm.

Solution:

$$(\neg rain \rightarrow warm)$$

- (b) If Bob is going for a swim, then he always eats ice cream and it is not raining.

Solution:

$$(BobSwims \rightarrow (BobEatsIcecream \wedge \neg rain))$$

- (c) Bob is going for a swim exactly if he eats ice cream and it is warm or does not rain.

Solution:

Natural language is ambiguous here. The statement can be understood in two ways:

$$(BobSwims \leftrightarrow (BobEatsIcecream \wedge (warm \vee \neg rain)))$$

$$(BobSwims \leftrightarrow ((BobEatsIcecream \wedge warm) \vee \neg rain))$$

- (d) Either the sun is shining or it is raining (but not both).

Solution:

$$((sun \vee rain) \wedge \neg(sun \wedge rain))$$

Exercise 1.3 (Semantics of Propositional Logic; 2+2 marks)

Consider formula $\varphi = ((A \wedge \neg B) \rightarrow (\neg A \vee \neg C))$ over $\{A, B, C\}$.

- (a) Specify a model \mathcal{I} for φ and prove that $\mathcal{I} \models \varphi$.

Solution:

$$\mathcal{I} = \{A \mapsto 0, B \mapsto 0, C \mapsto 0\}$$

Since $\mathcal{I}(A) = 0$, it holds that $\mathcal{I} \not\models A$ and hence $\mathcal{I} \not\models (A \wedge \neg B)$. This implies that $\mathcal{I} \models \neg(A \wedge \neg B)$ and as a result, it holds that $\mathcal{I} \models (\neg(A \wedge \neg B) \vee \psi)$ for arbitrary formulas ψ . In particular, this is true for $(\neg(A \wedge \neg B) \vee (\neg A \vee \neg C))$, which is the formula abbreviated by φ .

- (b) Specify an interpretation \mathcal{I} under which φ does *not* hold and prove that $\mathcal{I} \not\models \varphi$.

Solution:

$$\mathcal{I} = \{A \mapsto 1, B \mapsto 0, C \mapsto 1\}$$

It is easy to see that $\mathcal{I} \models A$ and $\mathcal{I} \models \neg B$ (because $\mathcal{I} \not\models B$). Hence, it follows that $\mathcal{I} \models (A \wedge \neg B)$ and from this that $\mathcal{I} \not\models \neg(A \wedge \neg B)$ (*).

From $\mathcal{I}(C) = 1$, we get $\mathcal{I} \models C$, implying that $\mathcal{I} \not\models \neg C$. Analogously, $\mathcal{I}(A) = 1$ implies that $\mathcal{I} \not\models \neg A$ and together it follows that $\mathcal{I} \not\models (\neg A \vee \neg C)$ (**).

From (*) and (**), we conclude that $\mathcal{I} \not\models (\neg(A \wedge \neg B) \vee (\neg A \vee \neg C))$ and thus $\mathcal{I} \not\models \varphi$.

Exercise 1.4 (Semantics of Propositional Logic; 1 marks)

Let φ and ψ be propositional formulas over the same set A of atomic propositions and let \mathcal{I} be an interpretation for A . Prove that $\mathcal{I} \models (\varphi \rightarrow \psi)$ iff $\mathcal{I} \not\models \varphi$ or $\mathcal{I} \models \psi$.

Solution:

Expression $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$, which is true under \mathcal{I} iff $\mathcal{I} \models \neg \varphi$ or $\mathcal{I} \models \psi$. The statement follows from $\mathcal{I} \models \neg \varphi$ iff $\mathcal{I} \not\models \varphi$.