Theory of Computer Science

G. Röger Spring Term 2020 University of Basel Computer Science

Exercise Sheet 10 Due: Wednesday, May 6, 2020

Exercise 10.1 (Transitivity of Reductions; 2 marks) Show for any languages A, B and C: if $A \leq B$ and $B \leq C$, then $A \leq C$.

Exercise 10.2 (Undecidability; 3 marks)

In each part, give an example of a language L_i with the given properties (without justification), or explain why no such language exists (with a short explanation).

- (a) L_1 is undecidable and L_1 and $\overline{L_1}$ are semi-decidable.
- (b) L_2 is a type-0 language and decidable.
- (c) L_3 is a type-0 language and undecidable.

This question was part of an exam question in 2018.

Exercise 10.3 (Rice's Theorem; 2 marks)

For which of the following languages does Rice's theorem show that the language is undecidable? For each language where Rice's theorem can be used, specify the subset of Turing-computable functions S for which you use the theorem.

Hint: You do not have to write down any proofs. If Rice's theorem is applicable, specify the set S, otherwise give a short reason (1 sentence) why Rice's theorem is not applicable.

- (a) $L = \{w \in \{0,1\}^* \mid M_w \text{ does not terminate with a valid output for any input }\}$
- (b) $L = \{w \in \{0,1\}^* \mid M_w \text{ computes the successor function or the predecessor function }\}$
- (c) $L = \{w \in \{0,1\}^* \mid M_w \text{ requires an even number of steps on the input 0011} \}$
- (d) $L = \{w \in \{0,1\}^* \mid \text{ No input of } M_w \text{ leads to a valid output containing 0 } \}$

Exercise 10.4 (Undecidable Grammar Problems; 1.5+1.5 marks)

The *emptiness problem*, the *equivalence problem* and the *intersection problem* for general grammars are defined as:

- EMPTINESS: Given a general grammar G, is $\mathcal{L}(G) = \emptyset$?
- EQUIVALENCE: Given two general grammars G_1 and G_2 , is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?
- INTERSECTION: Given two general grammars G_1 and G_2 , is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?

You can use without proof that EMPTINESS is undecidable. (As a bonus exercise, you can also prove this statement with Rice's theorem.)

- (a) Show that EQUIVALENCE is undecidable, by reducing EMPTINESS to it.
- (b) Show that INTERSECTION is undecidable, by reducing EMPTINESS to it.