
Theorie der Informatik

G. Röger
Frühjahrssemester 2020

Universität Basel
Fachbereich Informatik

Übungsblatt 8
Abgabe: Mittwoch, 22. April 2020

Aufgabe 8.1 (Automaten; 2 Punkte)

Schreiben Sie eine Zusammenfassung über die verschiedenen Typen von Automaten, die in Kapitel
C behandelt wurden. Sie müssen nicht erklären, was DFA/NFA/PDA/DTM/NTM sind, oder wie
sie definiert sind. Ihre Zusammenfassung sollte den Fokus stattdessen auf die Unterschiede dieser
Automaten legen und darauf, wie diese Unterschiede die Komplexität der Sprachen beeinflussen,
die mit ihnen akzeptiert werden können. Auf welche Art können die Automaten beispielswei-
se informationen speichern während sie die Eingabe lesen, und wie viel Information ist nötig
um verschiedene Sprachen zu akzeptieren? Eine gute Antwort kann in ca. einer halben Seite in
LATEXgeschrieben werden.

Aufgabe 8.2 (2+2+2+2 Punkte)

Anmerkung: Bei dieser Übungsaufgabe handelt es sich um eine Programmieraufgabe, in der Sie be-
stehenden Java-Code vervollständigen sollen. Bitte reichen Sie nur Code ein, den sie selbstständig,
das heisst ohne Einbindung von fremdem Code erstellt haben. Das heisst insbesondere, dass Sie
Ihre Lösung ohne Zuhilfenahme der einfach im Internet zu findenden Musterlösung
erstellen sollten, da die Korrektur des Codes viel Arbeit für uns bedeutet. Die Java Standardbi-
bliothek dürfen Sie selbstverständlich ohne Einschränkung verwenden.
Bei technischen Schwierigkeiten oder Verständnisproblemen helfen wir gerne weiter. Bitte wenden
Sie sich dazu mit genügend zeitlichem Abstand zum Abgabetermin an Ihren Tutor.
Geben Sie Ihre Lösung bitte nicht auf Papier ab, sondern laden Sie sie im ADAM-Portal hoch.
Falls Sie Testfälle schreiben, dann geben Sie sie bitte ebenfalls mit ab.

Im Rahmen dieser Aufgabe soll ein Simulator für deterministische Turing-Maschinen implementiert
werden.
Ein Gerüst dafür finden Sie auf der Vorlesungsseite. Implementieren Sie die vorgegebenen Metho-
den und wählen Sie geeignete private Felder für die Klassen. Implementieren Sie nur die durch
// TODO gekennzeichneten Stellen; fügen Sie keine weiteren Methoden, Klassen oder öffentliche
Felder hinzu.

(a) Implementieren Sie die folgenden Methoden der Klasse Tape, die das beidseitig unendliche
Band einer Turing-Maschine (inklusiv der Position des Schreib-/Lesekopfes) repräsentieren
soll:

Der Konstruktor Tape(word, blank) bekommt die initiale Bandbelegung und das zu ver-
wendende Blank-Symbol übergeben. Der Schreib-/Lesekopf soll sich initial auf dem ersten
Zeichen der Eingabe befinden.

Die Methode read() soll das Zeichen unter dem Kopf zurückgeben.

Die Methode write(symbol) soll das Zeichen symbol an der Position des Kopfes auf das
Band schreiben.

Die Methoden moveLeft() und moveRight() sollen den Kopf um eine Position nach rechts
oder nach links verschieben.

Die Methode dumpAlpha() soll den Teil des bisher verwendeten Bands ausgeben, der links
der aktuellen Kopfposition ist (exklusive der aktuellen Position).

Die Methode dumpBeta() soll den Teil des bisher verwendeten Bands ausgeben, der rechts
der aktuellen Kopfposition ist (inklusive der aktuellen Position).



Die Methode usedSpace() soll die Grösse (die Anzahl der Bandfelder) des bisher verwen-
deten Bandes zurückgeben.

(b) Implementieren Sie den Konstruktor TuringMachine(Q, Sigma, Gamma, delta, q0, blank,

E), wobei die einzelnen Parameter den normalen Elementen einer Turing-Maschine ent-
sprechen. Bei der Erstellung der Turing-Maschine soll sichergestellt werden, dass sie kor-
rekt spezifiziert ist: Ist delta eine totale Funktion? Ist Sigma Teilmenge von Gamma? Ist
das blank in Gamma, aber nicht in Sigma? Ist E eine Teilmenge von Q? Werfen Sie eine
InvalidSpecificationException, wenn die Spezifikation nicht in Ordnung ist.

(c) Implementieren Sie die restlichen Methoden der Klasse TuringMachine:

initialize(word) soll die Turing-Maschine initialisieren (d.h. die initiale Konfiguration
herstellen). Stellen Sie bitte sicher, dass nur Symbole aus dem Eingabealphabet in word

vorkommen (sonst werfen Sie eine InvalidSpecificationException).

step() soll einen Schritt der Turing-Maschine ausführen. Werfen Sie eine RuntimeException,
wenn die Maschine nicht initialisiert wurde oder in einem Endzustand ist.

Die Methode dumpConfiguration() soll die aktuelle Konfiguration der Turing-Maschine
ausgeben.

Die Methode dumpStatistics() soll ausgeben, wieviele Schritte bereits gemacht wurden
und wieviel Platz auf dem Band verwendet wurde.

run(maxSteps) soll die Turing-Maschine laufen lassen. Die Maschine soll nur anhalten wenn
sie in einem Endzustand ist oder wenn die Anzahl Schritte maxSteps erreicht hat. Dies
ist nützlich, um eine Maschine auf einem Wort testen zu können, auf dem sie nicht hält.
Die Methode run() ruft run(Integer.MAX VALUE) auf, um ein unbeschränktes Laufen der
Turingmaschine zu simulieren. Rufen Sie dumpConfiguration() am Anfang der Simulation
und nach jedem Schritt auf, und rufen Sie dumpStatistics() am Ende der Simulation auf.

(d) Betrachten Sie die folgende Turing-Maschine.

q0 q1 q2 q3

q4

q5

q6

b→ b,N
c→ c,N
x→ x,N

�→ �,N

a→ x,R

a→ a,R
x→ x,R
c→ c,N
�→ �,N

b→ x,R

b→ b,R
x→ x,R
a→ a,N
�→ �,N

c→ x,N

x→ x,L
b→ b,L
c→ c,N

a→ a,L

�→ �,R

x→ x,R

a→ a,L
b→ b,L
c→ c,L
�→ �,L

x→ x,R
a→ a,N
b→ b,N
c→ c,N

�→ �,N

Implementieren Sie die main-Methode der Klasse SimulateTM, die ein Objekt der Klasse
TuringMachine erstellen soll, welches die oben dargestellte Turing Maschine repräsentieren
soll. Testen Sie verschiedene Eingaben für die Turing Maschine. Darunter mindestens:

• das leere Wort, und



• zwei Wörter, die in der Sprache liegen welche die Turing Maschine akzeptiert (aber
nicht das leere Wort oder aabbcc), und

• zwei Wörter, die nicht in der Sprache liegen welche die Turing Maschine akzeptiert.

Dabei soll bei jedem Schritt die Konfiguration ausgegeben werden. Für Wörter, die nicht in
der Sprache liegen, verwenden Sie bitte einen kleinen Wert für maxSteps, bei dem man schon
sehen kann, dass die TM nicht mehr halten wird. Für Wörter die in der Sprache liegen, rufen
Sie run() ohne Parameter auf.

Zu Ihrer Kontrolle: Auf der Eingabe aabbcc benötigt die Turing-Maschine 29 Schritte und
verwendet 8 Bandzellen.


