

Theory of Computer Science

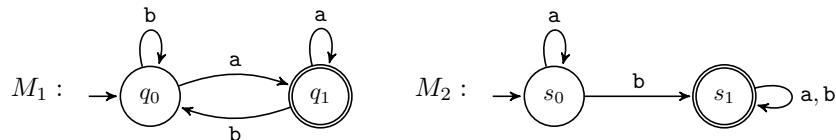
G. Röger
Spring Term 2020

University of Basel
Computer Science

Exercise Sheet 6

Due: Wednesday, April 8, 2020

Exercise 6.1 (Regular Expressions and Pumping Lemma for Regular Languages; 3 marks)


Are the following languages over $\Sigma = \{a, b, c\}$ regular? If so, prove it by specifying a regular expression which describes the language. If not, prove it with help of the Pumping-Lemma.

- (a) $L_1 = \{a^n b^m c^{n+m} \mid n, m \in \mathbb{N}_0\}$
- (b) $L_2 = \{a^2 b^n a^2 c^m \mid n, m \in \mathbb{N}_0\}$

Note on marking: One of the languages is regular, the other one is not. The subtask with the regular language is worth 0.5 points, the other subtask 2.5 points.

Exercise 6.2 (Product Automaton; 2 marks)

Given the following DFAs M_1 and M_2 .

Specify the product automaton that accepts $\mathcal{L}(M_1) \cap \mathcal{L}(M_2)$.

Exercise 6.3 (Chomsky Normal Form, 3 marks)

Specify a grammar G' in Chomsky normal form that generates the same language as the context-free grammar $G = \langle \Sigma, V, P, S \rangle$ with $\Sigma = \{a, b\}$, $V = \{S, W, X, Y, Z\}$ and the following rules in P :

$$\begin{array}{lllll} S \rightarrow \varepsilon & S \rightarrow XW & S \rightarrow Z & W \rightarrow X & X \rightarrow aZb \\ Y \rightarrow W & Y \rightarrow bY & Z \rightarrow bb & Z \rightarrow Za & X \rightarrow Y \end{array}$$

Give sufficient intermediate steps.

Exercise 6.4 (Length of Derivations in Chomsky Normal Form; 2 marks)

Let G be a grammar in Chomsky normal form and $w \in \mathcal{L}(G)$ a non-empty word ($w \neq \varepsilon$), which is generated by G . Show that every derivation of w from the start variable of G consists of exactly $2|w| - 1$ steps.