Theory of Computer Science

G. Röger Spring Term 2020 University of Basel Computer Science

Exercise Sheet 1 Due: Wednesday, February 26, 2020

On February 24, we introduce the concept of truth tables in the lecture. Please do *not* use them when solving the exercises on this sheet.

Exercise 1.1 (Structural Induction; 3 marks)

We define two functions over binary trees (as presented in the lecture): $height : \mathcal{B} \to \mathbb{N}_0$ maps a binary tree $B \in \mathcal{B}$ to its height and $leaves : \mathcal{B} \to \mathbb{N}_0$ maps a binary tree $B \in \mathcal{B}$ to the number of its leaves.

- $height(\Box) = 0$
- $height((B_L, \bigcirc, B_R)) = \max(height(B_L), height(B_R)) + 1$
- $leaves(\Box) = 1$
- $leaves((B_L, \bigcirc, B_R)) = leaves(B_L) + leaves(B_R)$

Prove the following property for all binary trees $B \in \mathcal{B}$ by structural induction:

 $leaves(B) \le 2^{height(B)}$.

Exercise 1.2 (Formalization in Propositional Logic; 0.5+0.5+0.5+0.5 marks)

Formalize the following statements as propositional formulas. In order to do so, also define appropriate atomic propositions. Take care to fully parenthesize all formulas.

- (a) If it does not rain, it is warm.
- (b) If Bob is going for a swim, then he always eats ice cream and it is not raining.
- (c) Bob is going for a swim exactly if he eats ice cream and it is warm or does not rain.
- (d) Either the sun is shining or it is raining (but not both).

Exercise 1.3 (Semantics of Propositional Logic; 2+2 marks) Consider formula $\varphi = ((A \land \neg B) \rightarrow (\neg A \lor \neg C))$ over $\{A, B, C\}$.

- (a) Specify a model \mathcal{I} for φ and prove that $\mathcal{I} \models \varphi$.
- (b) Specify an interpretation \mathcal{I} under which ϕ does not hold and prove that $\mathcal{I} \not\models \varphi$.

Exercise 1.4 (Semantics of Propositional Logic; 1 marks)

Let φ and ψ be propositional formulas over the same set A of atomic propositions and let \mathcal{I} be an interpretation for A. Prove that $\mathcal{I} \models (\varphi \rightarrow \psi)$ iff $\mathcal{I} \not\models \varphi$ or $\mathcal{I} \models \psi$.