
Foundations of Artificial Intelligence
10. State-Space Search: Breadth-first Search

Malte Helmert and Thomas Keller

University of Basel

March 16, 2020

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

5.–7. Foundations

8.–12. Basic Algorithms

8. Data Structures for Search Algorithms
9. Tree Search and Graph Search
10. Breadth-first Search
11. Uniform Cost Search
12. Depth-first Search and Iterative Deepening

13.–19. Heuristic Algorithms

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search

In Chapters 10–12 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters 13–19)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search

(this chapter)

uniform cost search

(Chapter 11)

depth-first search

(Chapter 12)

depth-limited search

(Chapter 12)

iterative deepening search

(Chapter 12)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (this chapter)

uniform cost search

(Chapter 11)

depth-first search

(Chapter 12)

depth-limited search

(Chapter 12)

iterative deepening search

(Chapter 12)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (this chapter)

uniform cost search (Chapter 11)

depth-first search (Chapter 12)

depth-limited search (Chapter 12)

iterative deepening search (Chapter 12)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Introduction

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
 e.g., open list as linked list or deque

A

open: A

searches state space layer by layer

always finds shallowest goal state first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
 e.g., open list as linked list or deque

A

B C

open: B, C

searches state space layer by layer

always finds shallowest goal state first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
 e.g., open list as linked list or deque

A

B

D E

C

open: C, D, E

searches state space layer by layer

always finds shallowest goal state first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
 e.g., open list as linked list or deque

A

B

D E

C

F G H

open: D, E, F, G, H

searches state space layer by layer

always finds shallowest goal state first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
 e.g., open list as linked list or deque

A

B

D

I J

E

C

F G H

open: E, F, G, H, I, J

searches state space layer by layer

always finds shallowest goal state first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
 e.g., open list as linked list or deque

A

B

D

I J

E

C

F G H

searches state space layer by layer

always finds shallowest goal state first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

without duplicate elimination (as a tree search)
 BFS-Tree

or with duplicate elimination (as a graph search)
 BFS-Graph

(BFS = breadth-first search).

 We consider both variants.

German: Breitensuche

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Reminder: Generic Tree Search Algorithm

reminder from Chapter 9:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (1st Attempt): Discussion

This is almost a usable algorithm, but it wastes some effort:

In a breadth-first search, the first generated goal node
is always the first expanded goal node. (Why?)

Hence it is more efficient to already perform the goal test
upon generating a node (rather than upon expanding it).

 How much effort does this save?

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (2nd Attempt): Discussion

Where is the bug?

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return 〈〉

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return 〈〉

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Reminder: Generic Graph Search Algorithm

reminder from Chapter 9:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

similar adaptations to BFS-Tree
(deque as open list, early goal test)

as closed list does not need to manage node information,
a set data structure suffices

for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is goal(init()):
return 〈〉

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n := open.pop front()
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Properties of Breadth-first Search

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Properties of Breadth-first Search

Properties of Breadth-first Search:

BFS-Tree is semi-complete, but not complete. (Why?)

BFS-Graph is complete. (Why?)

BFS (both variants) is optimal
if all actions have the same cost (Why?),
but not in general (Why not?).

complexity: next slides

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of breadth-first search is

1 + b + b2 + b3 + · · ·+ bd = O(bd)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(bd) (if b ≥ 2). (Why?)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Example of Complexity

example: b = 10; 100 000 nodes/second; 32 bytes/node

d nodes time memory

3 1 111 0.01 s 35 KiB

5 111 111 1 s 3.4 MiB

7 107 2 min 339 MiB

9 109 3 h 33 GiB

11 1011 13 days 3.2 TiB

13 1013 3.5 years 323 TiB

15 1015 350 years 32 PiB

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Summary

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Summary

blind search algorithm: use no information
except black box interface of state space

breadth-first search: expand nodes in order of generation

search state space layer by layer
can be tree search or graph search
complexity O(bd) with branching factor b,
minimal solution length d (if b ≥ 2)
complete as a graph search; semi-complete as a tree search
optimal with uniform action costs

	Blind Search
	

	Breadth-first Search: Introduction
	

	BFS-Tree
	

	BFS-Graph
	

	Properties of Breadth-first Search
	

	Summary
	

