

Foundations of Artificial Intelligence February 19, 2020 — 2. Introduction: AI Past and Present		
2.1 A Short History of AI		
2.2 AI Systems Past and Present		
2.3 Summary		
M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence	February 19, 2020	2 / 24

A Short History of Al

2.1 A Short History of Al

A Short History of AI

The Origins of AI

Before AI, philosophy, mathematics, psychology and linguistics asked similar questions and influenced AI.

Gestation of AI (\sim 1943–1956)

With the advent of electrical computers, many asked:

Can computers mimic the human mind?

 \rightsquigarrow Turing test

Foundations of Artificial Intelligence

2. Introduction: AI Past and Present

M. Helmert, T. Keller (University of Basel)

Early Enthusiasm: General Problem Solver (GPS)

- ► GPS: developed in 1957 by Herbert Simon and Allen Newell
- goal: build a universal problem solving machine by imitating human problem solving strategies
- \rightsquigarrow first representative of "thinking humanly" approach to AI
- every formalized symbolic problem solvable in principle by GPS
- practice: GPS solves simple tasks like towers of Hanoi, but does not scale to realistic application problems

Video: ai02-figures/hanoi.mpeg

February 19, 2020

5 / 24

A Short History of Al

Dartmouth workshop (1956):

John McCarthy coins the term artificial intelligence \rightsquigarrow "official birth year" of the research area

early enthusiasm:

Herbert Simon (1957)

It is not my aim to surprise or shock you – but the simplest way I can summarize is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in the visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied.

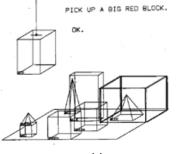
M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

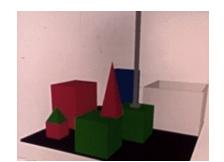
February 19, 2020 6 / 24

A Short History of Al

2. Introduction: AI Past and Present

60 Years of AI: 1960s and 1970s

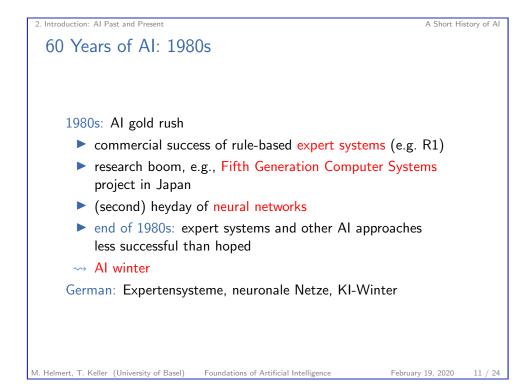

- 1960s: "intelligent behavior" in many demonstration systems for micro worlds (e.g., blocks world)
- ▶ 1970s: systems for micro worlds fail to scale
- → "intelligent behavior" requires knowledge
- \rightsquigarrow knowledge-based systems


German: wissensbasierte Systeme, Mikrowelten

A Short History of AI

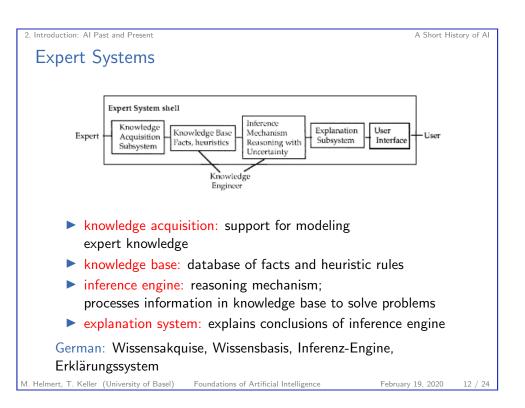
Micro Worlds: Blocks World (SHRDLU)

- SHRDLU understands natural language
- developed 1968–1970 by Terry Winograd at MIT AI Lab
- user dialog (via teletype) on blocks world
- graphical representation on screen



February 19, 2020

9 / 24


~> http://hci.stanford.edu/~winograd/shrdlu/

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

A SHRDLU Dialog

Human: PICK UP A BIG RED BLOCK. Computer: OK. [does it] Human: GRASP THE PYRAMID. Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. Human: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX. Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING. Computer: OK. [does it] Human: WHAT DOES THE BOX CONTAIN? Computer: THE BLUE PYRAMID AND THE BLUE BLOCK. Human: WHAT IS THE PYRAMID SUPPORTED BY? Computer: THE BOX. Human: HOW MANY BLOCKS ARE NOT IN THE BOX? Computer: FOUR OF THEM. Human: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH I TOLD YOU TO PICK UP? Computer: YES, THE RED CUBE. . . . M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence February 19, 2020 10 / 24

A Short History of AI

Expert Systems: R1/XCON

- application area: configuration of VAX computers according to customer specifications
- developed by John McDermott et al. (1978–1981)
- **input**: desired properties of the computer system
- output: specification of the computer system
- inference engine: simple forward chaining of rules

DISTRIBUTE-MB-DEVICES-3

- IF: the most current active context is distributing massbus devices
- & there is a single port disk drive that has not been assigned to a massbus
- & there are no unassigned dual port disk drives
- & the number of devices that each massbus should support is known
- & there is a massbus that has been assigned at least one disk drive and that should support additional disk drives
- & the type of cable needed to connect the disk drive to the previous device on the disk drive is known

THEN: assign the disk drive to the massbus

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

2. Introduction: AI Past and Present

A Short History of Al

13 / 24

February 19, 2020

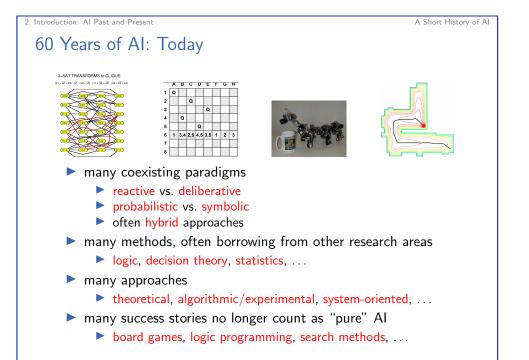
60 Years of AI: 2010s

2010s: broad commercial viability and visibility in society

- Siri is major innovation of iPhone 4s "Siri: Back to the Future": https://www.youtube.com/watch?v=UBHgj9TuHXM
- self-driving cars are tested in real-world traffic
- AlphaGo beats leading human players https://www.nature.com/articles/nature16961
- debate on technological unemployment "Humans Need Not Apply": https://www.youtube.com/watch?v=7Pq-S557XQU

60 Years of AI: 1990s and 2000s

1990s and 2000s: AI comes of age


- advent of probabilistic methods
- agent-oriented approaches
- formalization of AI techniques
- better understanding of theoretical complexity
- increased use of mathematical methods

Russell & Norvig (1995)

Gentle revolutions have occurred in robotics, computer vision, machine learning, and knowledge representation. A better understanding of the problems and their complexity properties, combined with increased mathematical sophistication, has led to workable research agendas and robust methods.

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

February 19, 2020 14 / 24

Focus on Algorithms and Experiments

Many AI problems are inherently difficult (NP-hard), but strong search techniques and heuristics often solve large problem instances regardless:

satisfiability in propositional logic

- 10,000 propositional variables or more via conflict-directed clause learning
- constraint solvers
 - good scalability via constraint propagation and automatic exploitation of problem structure

action planning

10¹⁰⁰ search states and more by search using automatically inferred heuristics

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

2. Introduction: AI Past and Present

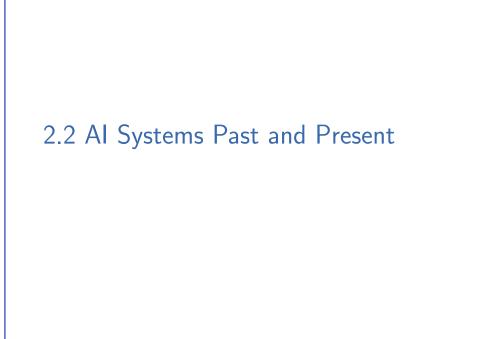
Al Systems Past and Present

17 / 24

February 19, 2020

A Short History of Al

Example System (1996): Chess


Deep Blue vs. Kasparov (1996):

 first win of a chess computer against reigning world champion under tournament conditions (time controls)

Deep Blue in Futurama: http://www.cc.com/video-clips/p1jk76/futurama-action-rangers

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

February 19, 2020 18 / 24

AI Systems Past and Present

2. Introduction: AI Past and Present

2. Introduction: AI Past and Present

Example System (2015): Poker

Al Systems Past and Present

Cepheus (2015), developed at the University of Alberta, "solves" heads-up limit Hold'em

Polaris vs. world-class players (2008)

http://poker.cs.ualberta.ca/

Univ. of Alberta computer poker research group

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

February 19, 2020 20 / 24

February 19, 2020

21 / 24

Summar

Example System (1998): Driving Cars

ALVINN (1998), developed by Dean Pomerleau et al., CMU, keeps the lane for more than 4000 km

- semi-autonomic driving
- camera images, artificial neural networks

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

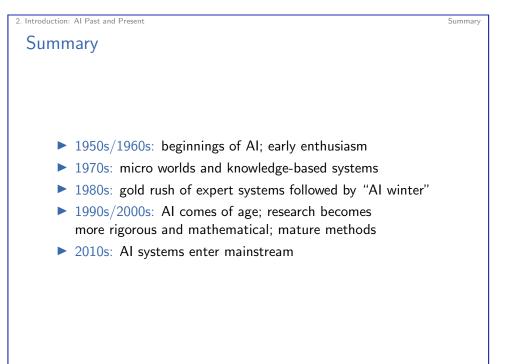
2.3 Summary

2. Introduction: AI Past and Present

2. Introduction: AI Past and Present

Example System (2005): Driving Cars

Stanley (2005) by Sebastian Thrun et al., Stanford University, wins DARPA Grand Challenge (2'000'000 US\$ prize)


- drives autonomously through Mojave desert (212 km, off-road)
- winning time: less than 7 hours

videos: ai02-figures/stanley-1.avi, ai02-figures/stanley-2.wmv

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence

February 19, 2020 22 / 24

