
Sudoku as a Constraint Problem

Helmut Simonis

IC-Parc
Imperial College London
hs@icparc.ic.ac.uk

Abstract. Constraint programming has finally reached the masses, thou-
sands of newspaper readers (especially in the UK) are solving their
daily constraint problem. They apply complex propagation schemes with
names like “X-Wing” and “Swordfish” to find solutions of a rather simple
looking puzzle called Sudoku. Unfortunately, they are not aware that this
is constraint programming. In this paper we try to understand the puzzle
from a constraint point of view, show models to solve and generate puz-
zles and give an objective measure of the difficulty of a puzzle instance.
This measure seems to correlate well with grades (e.g. easy to hard) that
are assigned to problem instances for the general public. We also show
how the model can be strengthened with redundant constraints and how
these can be implemented using bipartite matching and flow algorithms.

1 Introduction

Sudoku [1] is a puzzle played on a partially filled 9x9 grid. The task is to complete
the assignment using numbers from 1 to 9 such that the entries in each row, each
column and each major 3x3 block are pairwise different. Like for many logical
puzzles the challenge in Sudoku does not just lie in finding a solution. Well posed
puzzles have a unique solution and the task is to find it without guessing, i.e.
without search. In this paper we compare a number of propagation schemes on
how many problem instances they can solve by constraint propagation alone.

The basic Sudoku problem can be modelled with constraint programming [2]
by a combination of alldifferent constraints[3]. Using different consistency tech-
niques for these constraints we derive a number of propagation schemes with
differing strength. We can extend the model either by shaving[4], testing each
value in each domain with a one-step lookahead technique or by adding redun-
dant constraints. We use simplified versions of the colored matrix constraint[5,
6] and the same with cardinality constraint [7] and propose additional, new con-
straints which are also based on matching and flow algorithms.

We have evaluated our methods on different sets of example problems and
can see how the grades assigned by the puzzle designers often, but not always
match the propagation schemes described here. This evaluation also gives a fair
comparison of the difficulty of the different puzzle sources.

The paper is structured as follows: We first discuss some related work in
section 2 and then give a formal problem definition in section 3. This is followed



in section 4 by a description of the constraint model used to express the problem.
Adding redundant constraints can improve the reasoning power of a constraint
model, we present different alternatives in section 5. We continue in section 6 by
listing the different combinations of propagation schemes used for the evaluation
in section 7. Finally, we discuss methods to generate puzzles in section 8, before
ending with some conclusions.

2 Related work

There is a whole sub area in constraint programming concerned with backtrack-
free search[2]. But its focus is on identifying problem classes where all instances
can be solved without backtracking. For the Sudoku puzzle we want to know
which problem instances we can solve without search.

Solving puzzles has always been a favorite activity for the constraint program-
ming community. Starting with Lauriere[8], puzzles were used to come up with
new constraint mechanisms and to compare different solution methods. Exam-
ples are n-queens[9], the five houses puzzle[2], the progressive party problem[10]
and more recently the social golfer problem[11]. Some well known games like
Peg Solitaire[12] and minesweeper[13] were also approached with constraint pro-
gramming. The Sudoku problem can be easly modelled using the alldifferent[3]
constraint. There are other problems where this constraint plays a central role,
in particular quasi-group completion[6][14][15][16], but also industrial problems
like aircraft stand allocation[17] [18].

An alternative view of the Sudoku problem is provided by [19], this could be
the basis for additional, redundant constraints.

3 Problem Definition

Definition 1. A Sudoku square of order n consists of n4 variables formed into
a n2 × n2 grid with values from 1 to n2 such that the entries in each row, each
column and in each of the n2 major n × n blocks are alldifferent.

An example of a Sudoku square is shown in table 1. The major blocks are outlined
by a thicker framing.

Currently, only Sudoku problems of order 3 (9 × 9 grid) are widely used.
It was claimed in [1] that there are 6,670,903,752,021,072,936,960 valid Sudoku
squares of order 3.

Definition 2. A Sudoku problem (SP) consists of a partial assignment of the
variables in a Sudoku square. The objective is to find a completion of the assign-
ment which extends the partial assignment and satisfies the constraints.

Table 2 shows a SP in the form normally presented. Its solution is the square
shown in table 1.

We are only interested in puzzles which have a unique solution. If a partial
assignment allows more than one solution, we need to add hints until it is well
posed.



7 2 6 4 9 3 8 1 5

3 1 5 7 2 8 9 4 6

4 8 9 6 5 1 2 3 7

8 5 2 1 4 7 6 9 3

6 7 3 9 8 5 1 2 4

9 4 1 3 6 2 7 5 8

1 9 4 8 3 6 5 7 2

5 6 7 2 1 4 3 8 9

2 3 8 5 7 9 4 6 1

Table 1. Example Sudoku Square

2 6 8 1

3 7 8 6

4 5 7

5 1 7 9

3 9 5 1

4 3 2 5

1 3 2

5 2 4 9

3 8 4 6

Table 2. Example Sudoku Problem



Definition 3. A SP is well posed if it admits exactly one solution.

Ideally, the hints of a puzzle should not contain any redundant information,
e.g. there should be no hint that is itself a logical consequence of the other hints.

Definition 4. A well posed SP is locally minimal if no restriction of the assign-
ment is a well posed problem.

Whether a puzzle can be solved without guessing depends on the deduction
mechanism used. We only use a informal notion here, a more formal treatment
can be found in [2].

Definition 5. A SP is search free wrt. a propagation method if it is solved
without search, just by applying the constraint reasoning.

4 Constraint Model

We now discuss the basic model for the Sudoku puzzle. The programs are written
in ECLiPSe 5.8[20, 21]. The program uses the IC library (which defines a forward
checking[3, 22] version of alldifferent) and its extension ic global, which provides
a bound-consistent[23, 24] alldifferent. A propagator for a hyper arc-consistent
alldifferent[25] was added for the study.

The program uses a n2 ∗ n2 matrix of finite domain variables with domain
1 to n2. We set up 3 ∗ n2 alldifferent constraints for each row, each column and
each major n ∗ n block.

4.1 Channeling

In our problem, each alldifferent constraint sets up a bijection between n2 vari-
ables and n2 values. In this bijection the roles of variables and values are inter-
changeable, but the constraint handling of the forward checking alldifferent is
oriented. For example, it will assign a variable which has only one value left in its
domain, but it will not assign a value which occurs only once in the domains of all
variables. A method of overcoming this limitation is the use of channeling[26]. For
each alldifferent constraint we introduce a dual set of variables, which are linked
to the original variables via an inverse constraint [5], and which themselves must
be alldifferent. This improves the reasoning obtained from the forward checking
and the bound-consistent versions of the alldifferent, but obviously is useless for
the hyper arc-consistent alldifferent.

5 Redundant Constraints

Even if we use hyper arc-consistency as the method for each of the alldifferent
constraints we will not always achieve global consistency. The constraints inter-
act in multiple ways and the local reasoning on each constraint alone can not
exploit these connections. A common technique to help with this problem is the



use of redundant constraints which can strengthen the deduction by combining
several of the original constraints. We show four such combinations here. The
first is a simplified version of the colored matrix [5]. This was already used in [6]
to improve a method for quasi-group completion. The others are new, but use
bi-partite matching and flow techniques inspired by [27].

5.1 Row/Column interaction

This constraint handles the interaction of rows and columns in the matrix. The
colored matrix constraint[5], also called cardinality matrix in [6], expresses con-
straints on the number of occurrences of the values in rows and columns of a
matrix. This reduces to a set of simple matching problems for a permutation
matrix. Each value must occur exactly once in each row and column, this cor-
responds to a matching between row and columns (the two sets of nodes), and
edges which link a row and a column if the given value is in the domain of the
corresponding matrix element. By finding a maximal matching and then iden-
tifying strongly connected components in a re-oriented graph we can eliminate
those values from all domains which do not belong to any maximal matching.
Figure 1 shows the form of the graph considered.

r1 c1

r2 c2

.

.

.
.
.
.

S
.
.
. cj T

ri
.
.
.

.

.

.
.
.
.

r9 c9

v ∈ dom(mij)

Fig. 1. Row/Column Matching

We have to solve one matching problem per value, this makes 9 constraints.



5.2 Row/Block interaction

We now look at the interaction of a single row(column) with a single major block
as shown in figure 2. The row alldifferent constraint and the alldifferent constraint

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23

x31 x32 x33

Fig. 2. Row/Block Interaction

for the major block coincide in three variables. One necessary condition is that
the set of variables B = {x14, x15, x16, x17, x18, x19} uses the same set of values
as the set C = {x21, x22, x23, x31, x32, x33} of variables. We can exploit this
condition by removing from the variables in set B all values which are not
supported by values in set C and vice versa. This constraint is a special case of
the same with cardinality of [7], which achieves hyper arc-consistency by solving
a flow problem. For this simpler variant, our method seems equivalent.

Considering all rows/columns and major blocks leads to 54 such constraints.

5.3 Rows/Blocks interaction

We can also consider the interaction of all major blocks in a line (column) with
the three intersecting rows(columns), as shown in figure 3. Each value must occur

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

Fig. 3. Rows/Blocks interaction

exactly once in each row, but also in each block. For every value, we can express
this as a matching problem between rows and blocks, which are the nodes in the
bipartite graph shown in figure 4. There is an arc between a row and a block
if the given value is in the domain of any of the three overlapping variables. If
that edge does not belong to any matching, we can remove the value from the
domain of all three variables. The algorithm works in the usual way, we first
find a maximal matching, reorient the edges not in the matching and search for
strongly connected components (SCC). Edges which are not in the matching and
whose ends do not belong to the same SCC can be removed.



There are 6 ∗ 4 = 54 of these constraints.

r1 b1

S r2 b2 T

r3 b3

Fig. 4. Rows/Blocks matching problem

5.4 Rows/Columns/Blocks interaction

Ideally, we would like to capture the interaction of row, column and block con-
straints together. But we then have three sets of nodes to consider, so that a
simple bipartite matching seems no longer possible. We would need a more com-
plex flow model like the one considered in [27] to capture the interaction of the
alldifferent constraints.

5.5 Shaving

Shaving[4] is a very simple, yet effective technique which considers the complete
constraint set by trying to set variables to values in their domain. If the assign-
ment fails, then this value can be removed from the domain, possibly eliminating
many inconsistent values before starting search. In many (especially scheduling)
problems the shaving is only applied to the minimal and maximal values in the
domain. For a puzzle like Sudoku the order of the values is not significant, we
therefore need to test all values in the domain. We use a simple program, which
operates on a list of variables, and which removes any value in the domain of
each variable which directly leads to a failure.

6 Propagation Schemes

The survey[3] describes different consistency methods for the alldifferent con-
straint. We combine them with some of the redundant constraints above to
create the propagation schemes in table 3. The propagation schemes form a lat-
tice as shown in figure 5, a dotted line indicates that in our evalution we haven’t
found an example to differentiate the two schemes.



⊤

HACSC3

HACSC HACC3 HACS3

HACC HACS HAC3 HACV

HAC

BCI BCV

BC

FCI FCV

FC

⊥

Fig. 5. Lattice of propagation schemes

FC alldifferent with arc consistency for binary decomposition (forward checking)
FCI forward checking with channeling
BC alldifferent with bound-consistency
BCI bound-consistency with channeling
HAC alldifferent with hyper arc-consistency
HACS HAC with same constraints
HACC HAC with colored matrix
HAC3 HAC with 3rows/blocks interaction
HACSC HAC with colored matrix and same constraints
HACS3 HAC with same constraints and 3rows/blocks interaction
HACC3 HAC with colored matrix and 3rows/blocks interaction
HACSC3 HAC with same constraints, colored matrix and 3rows/blocks interaction
FCV alldifferent with forward checking plus shaving
BCV alldifferent with bound-consistency plus shaving
HACV alldifferent with hyper arc-consistency plus shaving

Table 3. Propagation Schemes



7 Evaluation

We decided to test our programs on different sets of published puzzle instances.
In the UK, several newspapers print their daily Sudoku puzzle, and have pub-
lished collections of these. We use sets from “The Times”[28], “The Daily Tele-
graph”[29], “The Guardian”[30], “The Independent”[31], “The Daily Mail”[32]
and “The Sun”[33]. There are also magazines which specialize in Sudoku puzzles,
of particular note is the Japanese puzzle publisher Nikoli[34–36], whose puzzles
also appear in the UK as [37]. In addition, there are books of puzzle instances[38–
41]. Usually, each instance is given a problem difficulty by the puzzle designer. In
discussion boards, people often complain about the arbitrary way this difficulty
is assigned. In addition we have found collections[42, 43] of 450 and 7611 puzzles
which have only 17 presets, the currently smallest known number of presets for
well posed problems. These are not classified by difficulty. The collection [44]
contains mainly very hard problems.

In table 4 we summarize the results of our tests. Each entry is for a group
of instances with the same grade. We present the source, the grade, the number
of instances (Inst), and the percentage of problems solved search free for the
different propagation schemes considered.

Percentage Searchfree
Source Grade Inst FC FCI BC BCI HAC HACS HACC HACSC HAC3

[28] easy 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[28] mild 26 42.31 100.00 92.31 100.00 100.00 100.00 100.00 100.00 100.00
[28] difficult 45 17.78 93.33 80.00 97.78 97.78 100.00 100.00 100.00 100.00
[28] fiendish 25 0.00 36.00 28.00 80.00 88.00 100.00 88.00 100.00 100.00
[29] gentle 32 21.88 100.00 93.75 100.00 100.00 100.00 100.00 100.00 100.00
[29] moderate 66 7.58 100.00 81.82 100.00 100.00 100.00 100.00 100.00 100.00
[29] tough 22 0.00 0.00 4.55 18.18 18.18 27.27 27.27 27.27 27.27
[29] diabolical 12 0.00 0.00 0.00 8.33 8.33 16.67 16.67 16.67 16.67
[30] easy 20 20.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[30] medium 40 15.00 97.50 92.50 97.50 97.50 100.00 100.00 100.00 100.00
[30] hard 40 0.00 45.00 42.50 90.00 92.50 100.00 97.50 100.00 100.00
[31] elementary 10 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[31] intermediate 50 48.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[31] advanced 68 22.06 95.59 94.12 100.00 100.00 100.00 100.00 100.00 100.00
[32] none 150 77.33 99.33 98.00 100.00 100.00 100.00 100.00 100.00 100.00
[33] teasers 40 87.50 100.00 97.50 100.00 100.00 100.00 100.00 100.00 100.00
[33] toughies 50 58.00 100.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00
[33] terminators 35 37.14 97.14 80.00 97.14 97.14 97.14 97.14 97.14 97.14
[34] easy 37 48.65 100.00 97.30 100.00 100.00 100.00 100.00 100.00 100.00
[34] medium 45 15.56 97.78 86.67 100.00 100.00 100.00 100.00 100.00 100.00
[34] hard 17 0.00 100.00 47.06 100.00 100.00 100.00 100.00 100.00 100.00

[35, 36] level2 18 11.11 100.00 83.33 100.00 100.00 100.00 100.00 100.00 100.00
[35, 36] level3 23 4.35 100.00 73.91 100.00 100.00 100.00 100.00 100.00 100.00
[35, 36] level4 24 8.33 100.00 66.67 100.00 100.00 100.00 100.00 100.00 100.00
[35, 36] level5 25 0.00 100.00 60.00 100.00 100.00 100.00 100.00 100.00 100.00
[35, 36] level6 28 0.00 35.71 42.86 89.29 89.29 100.00 92.86 100.00 100.00
[35, 36] level7 29 0.00 6.90 37.93 79.31 79.31 100.00 93.10 100.00 100.00
[35, 36] level8 29 0.00 3.45 20.69 65.52 68.97 100.00 93.10 100.00 100.00
[35, 36] level9 20 0.00 0.00 25.00 55.00 65.00 100.00 80.00 100.00 100.00
[35, 36] level10 14 0.00 0.00 0.00 28.57 28.57 92.86 57.14 100.00 92.86

[37] easy 27 70.37 100.00 96.30 100.00 100.00 100.00 100.00 100.00 100.00
[37] medium 20 10.00 95.00 80.00 95.00 95.00 100.00 95.00 100.00 100.00
[37] hard 12 0.00 8.33 33.33 83.33 83.33 100.00 100.00 100.00 100.00
[41] easy 10 70.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 4: Summary (cont’d)



Percentage Searchfree
Source Grade Inst FC FCI BC BCI HAC HACS HACC HACSC HAC3

[41] moderate 40 65.00 100.00 97.50 100.00 100.00 100.00 100.00 100.00 100.00
[41] tricky 40 55.00 92.50 97.50 100.00 100.00 100.00 100.00 100.00 100.00
[41] difficult 40 15.00 92.50 90.00 100.00 100.00 100.00 100.00 100.00 100.00
[41] challenging 40 0.00 92.50 60.00 95.00 95.00 100.00 100.00 100.00 100.00
[40] level1 40 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[40] level2 40 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[40] level3 40 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[40] level4 40 72.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[40] level5 41 24.39 100.00 92.68 100.00 100.00 100.00 100.00 100.00 100.00
[39] easy 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[39] harder 4 50.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[39] even-harder 4 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[38] easy 50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[38] medium 60 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[38] difficult 50 22.00 100.00 92.00 100.00 100.00 100.00 100.00 100.00 100.00
[38] super-difficult 40 0.00 77.50 60.00 92.50 92.50 100.00 100.00 100.00 100.00
[42] none 450 0.00 55.11 40.22 81.11 81.56 90.44 85.11 90.44 90.44
[43] none 7611 0.00 48.69 29.01 69.82 70.28 85.51 75.27 85.55 85.51
[44] none 100 0.00 0.00 3.00 5.00 5.00 14.00 10.00 14.00 14.00

Table 4: Summary

The programs seem to be working quite well in finding solutions without
search, except for the “tough” and “diabolical” puzzles from [29] and those
from [44]. These puzzles require either more powerful reasoning, or some form
of search. Testing values with a shaving step works very well on these examples,
as table 5 shows.

Preset Percentage Searchfree
Source Grade Inst Min Avg Max FC BC HAC FCV BCV HACV

[28] easy 4 34 34.75 36 100.00 100.00 100.00 100.00 100.00 100.00
[28] mild 26 27 29.12 32 42.31 92.31 100.00 100.00 100.00 100.00
[28] difficult 45 23 27.09 30 17.78 80.00 97.78 97.78 100.00 100.00
[28] fiendish 25 22 25.32 28 0.00 28.00 88.00 76.00 100.00 100.00
[29] gentle 32 26 28.28 31 21.88 93.75 100.00 96.88 100.00 100.00
[29] moderate 66 26 27.88 30 7.58 81.82 100.00 98.48 100.00 100.00
[29] tough 22 26 28.05 31 0.00 4.55 18.18 95.45 100.00 100.00
[29] diabolical 12 24 28.00 30 0.00 0.00 8.33 100.00 100.00 100.00
[30] easy 20 24 28.05 31 20.00 100.00 100.00 100.00 100.00 100.00
[30] medium 40 20 25.10 31 15.00 92.50 97.50 87.50 100.00 100.00
[30] hard 40 20 22.88 27 0.00 42.50 92.50 55.00 100.00 100.00
[31] elementary 10 28 31.20 34 80.00 100.00 100.00 100.00 100.00 100.00
[31] intermediate 50 24 29.02 34 48.00 100.00 100.00 100.00 100.00 100.00
[31] advanced 68 25 28.43 33 22.06 94.12 100.00 100.00 100.00 100.00
[32] none 150 30 32.01 33 77.33 98.00 100.00 100.00 100.00 100.00
[33] teasers 40 35 35.98 37 87.50 97.50 100.00 100.00 100.00 100.00
[33] toughies 50 32 35.54 36 58.00 98.00 100.00 100.00 100.00 100.00
[33] terminators 35 30 34.20 36 37.14 80.00 97.14 100.00 100.00 100.00
[34] easy 37 24 29.54 37 48.65 97.30 100.00 100.00 100.00 100.00
[34] medium 45 20 25.91 36 15.56 86.67 100.00 88.89 100.00 100.00
[34] hard 17 21 25.29 29 0.00 47.06 100.00 58.82 100.00 100.00

[35, 36] level2 18 22 24.39 28 11.11 83.33 100.00 100.00 100.00 100.00
[35, 36] level3 23 20 23.87 26 4.35 73.91 100.00 65.22 100.00 100.00
[35, 36] level4 24 20 23.63 29 8.33 66.67 100.00 66.67 100.00 100.00
[35, 36] level5 25 20 23.96 30 0.00 60.00 100.00 80.00 100.00 100.00
[35, 36] level6 28 20 23.61 28 0.00 42.86 89.29 60.71 100.00 100.00
[35, 36] level7 29 20 24.10 32 0.00 37.93 79.31 58.62 100.00 100.00
[35, 36] level8 29 21 23.28 29 0.00 20.69 68.97 41.38 100.00 100.00
[35, 36] level9 20 22 23.95 27 0.00 25.00 65.00 40.00 100.00 100.00
[35, 36] level10 14 22 24.64 29 0.00 0.00 28.57 35.71 100.00 100.00

Table 5: Shave Summary (cont’d)



Preset Percentage Searchfree
Source Grade Inst Min Avg Max FC BC HAC FCV BCV HACV

[37] easy 27 24 29.41 37 70.37 96.30 100.00 100.00 100.00 100.00
[37] medium 20 20 25.15 30 10.00 80.00 95.00 85.00 100.00 100.00
[37] hard 12 20 24.58 28 0.00 33.33 83.33 58.33 100.00 100.00
[41] easy 10 28 31.10 34 70.00 100.00 100.00 100.00 100.00 100.00
[41] moderate 40 26 29.50 34 65.00 97.50 100.00 100.00 100.00 100.00
[41] tricky 40 24 28.48 33 55.00 97.50 100.00 100.00 100.00 100.00
[41] difficult 40 24 28.27 34 15.00 90.00 100.00 100.00 100.00 100.00
[41] challenging 40 24 28.32 32 0.00 60.00 95.00 97.50 100.00 100.00
[40] level1 40 32 34.58 36 80.00 100.00 100.00 100.00 100.00 100.00
[40] level2 40 31 32.02 33 80.00 100.00 100.00 100.00 100.00 100.00
[40] level3 40 29 29.93 31 80.00 100.00 100.00 100.00 100.00 100.00
[40] level4 40 26 28.25 30 72.50 100.00 100.00 100.00 100.00 100.00
[40] level5 41 24 25.80 31 24.39 92.68 100.00 92.68 100.00 100.00
[39] easy 4 32 35.00 36 100.00 100.00 100.00 100.00 100.00 100.00
[39] harder 4 29 30.50 32 50.00 100.00 100.00 100.00 100.00 100.00
[39] even-harder 4 24 24.50 25 0.00 100.00 100.00 50.00 100.00 100.00
[38] easy 50 35 43.32 48 100.00 100.00 100.00 100.00 100.00 100.00
[38] medium 60 26 35.48 40 90.00 100.00 100.00 100.00 100.00 100.00
[38] difficult 50 24 27.84 30 22.00 92.00 100.00 98.00 100.00 100.00
[38] super-difficult 40 24 27.68 31 0.00 60.00 92.50 92.50 100.00 100.00
[42] none 450 17 17.00 17 0.00 40.22 81.56 1.56 100.00 100.00
[43] none 7611 17 17.00 17 0.00 29.01 70.28 0.62 99.89 100.00
[44] none 100 17 21.51 31 0.00 3.00 5.00 4.00 93.00 100.00

Table 5: Shave Summary

We can see that all problems can be solved by using shaving techniques com-
bined with hyper arc-consistency, and nearly all by combining bound-consistency
with shaving. Using only forward checking together with shaving works well as
long as enough presets are given. On the minimal problems it nearly always fails
to find solutions.

Table 6 shows the execution times needed for solving the puzzles. We use a
simple most-constrained/indomain, complete search routine (L) together with
our different propagation schemes. The models with channeling are penalized
by our naive hyper arc-consistent implementation of the inverse constraint. The
times show the minimal, maximal, average and median times over all examples
from the data sets above. All times are in milliseconds with ECLiPSe 5.8 on
a 1.5 GHz/1Gb laptop. The best results are obtained using bound-consistent
alldifferent constraints together with one shaving step before search.

Program Min Max Avg Median
HACV 0 7281 349 321

FCL 0 25077 745 140
BCL 0 3715 51 40
FCIL 340 10686 761 741
BCIL 190 2053 702 730

HACL 0 1812 322 330
FCVL 0 25026 725 111
BCVL 0 771 66 40

Table 6. Runtime (ms)



We were also interested if the published puzzles were locally minimal, i.e.
did not contain redundant hints. Table 7 shows the results on some tests. Most
of the published puzzles are not locally minimal, they often contain more than
10 redundant hints which can be removed without loosing the uniqueness of the
solution. The instances from [42, 43] are an exception, they were collected to
be locally minimal. Most of the hard puzzles from [44] are also minimal. We
computed this reduction with a simple, committed choice program. We search
for a hint that can be eliminated; if one is found, we commit to this choice and try
to find additional redundant hints. The method does not guarantee minimality
of the reduction, but leads to locally minimal instances.

Preset Locally Reduced
Source Grade Inst Min Avg Max Minimal Min Avg Max

[28] easy 4 34 34.75 36 0 23 23.75 24
[28] mild 26 27 29.12 32 0 22 23.62 25
[28] difficult 45 23 27.09 30 1 22 23.89 25
[28] fiendish 25 22 25.32 28 6 21 23.80 26
[29] gentle 32 26 28.28 31 0 23 24.03 26
[29] moderate 66 26 27.88 30 0 22 23.77 26
[29] tough 22 26 28.05 31 0 22 24.32 26
[29] diabolical 12 24 28.00 30 0 23 24.42 26
[30] easy 20 24 28.05 31 0 22 22.95 25
[30] medium 40 20 25.10 31 6 19 22.30 25
[30] hard 40 20 22.88 27 14 19 21.80 26
[31] elementary 10 28 31.20 34 0 21 23.80 26
[31] intermediate 50 24 29.02 34 0 22 23.94 27
[31] advanced 68 25 28.43 33 0 22 23.79 26
[32] none 150 30 32.01 33 0 22 23.84 26
[33] teasers 40 35 35.98 37 0 22 24.35 26
[33] toughies 50 32 35.54 36 0 22 24.68 27
[33] terminators 35 30 34.20 36 0 22 24.91 27
[34] easy 37 24 29.54 37 0 21 23.11 25
[34] medium 45 20 25.91 36 4 20 22.64 26
[34] hard 17 21 25.29 29 3 20 22.82 25

[35, 36] level2 18 22 24.39 28 2 20 22.72 25
[35, 36] level3 23 20 23.87 26 7 20 22.35 24
[35, 36] level4 24 20 23.63 29 6 19 22.13 25
[35, 36] level5 25 20 23.96 30 2 19 22.40 25
[35, 36] level6 28 20 23.61 28 9 20 22.54 24
[35, 36] level7 29 20 24.10 32 6 19 22.38 25
[35, 36] level8 29 21 23.28 29 10 19 22.24 24
[35, 36] level9 20 22 23.95 27 7 22 22.90 25
[35, 36] level10 14 22 24.64 29 4 22 23.36 25

[37] easy 27 24 29.41 37 1 20 23.26 26
[37] medium 20 20 25.15 30 2 20 22.20 24
[37] hard 12 20 24.58 28 2 20 22.83 25
[41] easy 10 28 31.10 34 0 22 23.70 25
[41] moderate 40 26 29.50 34 0 22 24.07 27
[41] tricky 40 24 28.48 33 1 21 23.57 25
[41] difficult 40 24 28.27 34 0 22 24.13 26
[41] challenging 40 24 28.32 32 0 22 24.05 26
[40] level1 40 32 34.58 36 0 21 23.55 26
[40] level2 40 31 32.02 33 0 21 23.55 25
[40] level3 40 29 29.93 31 0 22 23.40 25
[40] level4 40 26 28.25 30 0 21 23.02 25
[40] level5 41 24 25.80 31 0 20 22.68 24
[39] easy 4 32 35.00 36 0 23 24.00 25
[39] harder 4 29 30.50 32 0 23 24.00 26
[39] even-harder 4 24 24.50 25 1 21 22.75 25
[38] easy 50 35 43.32 48 0 22 24.22 28

Table 7: Reduction Summary (cont’d)



Preset Locally Reduced
Source Grade Inst Min Avg Max Minimal Min Avg Max

[38] medium 60 26 35.48 40 0 22 23.50 25
[38] difficult 50 24 27.84 30 0 22 24.22 26
[38] super-difficult 40 24 27.68 31 1 22 24.40 29
[42] none 450 17 17.00 17 450 17 17.00 17
[44] none 100 17 21.51 31 82 17 21.14 26

Table 7: Reduction Summary

8 Problem Generator

We have seen that with different variants of our model we can solve puzzle in-
stances of varying difficulty. Can we use the same techniques to generate puzzles
as well? We can consider three possible approaches to the puzzle generation:

1. We start with a random partial assignment of values to the grid and check
if this is a well posed puzzle, and whether it is search free for some strategy.
This does not give a guarantee to find solutions of a predetermined difficulty,
in addition the partial assignment may be inconsistent and we have to decide
a priori how many preset values we want to generate.

2. We start with an empty grid and add preset values one by one until there is a
unique solution or we detect inconsistency. If required, we can add redundant
hints until the problem is search free for a given propagation scheme. We
will need a backtracking mechanism to escape inconsistent assignments.

3. We start with a full grid and remove values until the problem is no longer
well posed or no longer search free for some propagation scheme. This will
lead to problems which are locally minimal and well posed. Generating initial
starting solutions is quite simple, but may still require some backtracking.

The third approach can either generate well posed, locally minimal problems
or can be used to find search-free puzzles of a given difficulty grade that can
not be further reduced without loosing the search free property. This bottom-up
problem generation has been used in [16] to generate solvable problem instances
of quasi-group completion for CSP or SAT solvers. In that case one starts with
a completed quasi-group, removes a number of values from the grid, and is left
with a feasible quasi-group completion problem. The generated problem may
have multiple solutions, but that is ok in the given context. As we are interested
in well posed problems, we have to make the removal steps one by one as long
as the solution stays unique.

9 Conclusions

In this paper we have discussed a constraint formulation of the Sudoku puz-
zle, and have seen that we can use different modelling techniques to find puz-
zle solutions without search. The problem is closely related to the quasi-group
completion problem, which has been extensively studied in the constraint com-
munity. The additional alldifferent constraints on the major blocks give us more



chances to find redundant constraints that can help in the solution process. Our
methods can solve many, but not all, published examples without search, some
requiring a shaving technique. We can use the model to generate puzzles of a
given difficulty, again following techniques developed for quasi-group comple-
tion. Sudoku puzzles are not only an interesting addition to the problem set for
developing constraint techniques, but also provide a unique opportunity to make
more people interested in constraint programming.

Acknowledgment

We want to thank J. Schimpf for suggesting a more elegant shaving implementa-
tion, and G. Stertenbrink for pointing out additional references and data sets.

References

1. various: Sudoku wikipedia entry. http://en.wikipedia.org/wiki/Sudoku (2005)
2. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2003)
3. van Hoeve, W.: The alldifferent constraint: A survey. sherry.ifi.unizh.ch/

article/vanhoeve01alldifferent.html (2001)
4. Torres, P., Lopez, P.: Overview and possible extensions of shaving techniques for

job-shop problems. In: 2nd International Workshop on Integration of AI and OR
techniques in Constraint Programming for Combinatorial Optimization Problems
(CP-AI-OR’2000). (2000) 181–186

5. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog. Technical
Report T2005:08, SICS (2005)

6. Regin, J., Gomes, C.: The cardinality matrix constraint. In: CP 2004. (2004)
7. Beldiceanu, N., Katriel, I., Thiel, S.: GCC-like restrictions on the same con-

straint. In: Recent Advances in Constraints (CSCLP 2004). Volume 3419 of LNCS.,
Springer-Verlag (2005) 1–11

8. Lauriere, J.: A language and a program for stating and solving combinatorial
problems. Artificial Intelligence 10 (1978) 29–127

9. Haralick, R., Elliott, G.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14 (1980) 263–313

10. Smith, B., Brailsford, S., Hubbard, P., Williams, H.: The progressive party prob-
lem: Integer linear programming and constraint programming compared. Con-
straints 1 (1996) 119–138

11. Harvey, W.: The fully social golfer problem. In: SymCon’03: Third International
Workshop on Symmetry in Constraint Satisfaction Problems. (2003) 75–85

12. Jefferson, C., Miguel, A., Miguel, I., Tarim, A.: Modelling and solving English
peg solitaire. In: Fifth International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’03). (2003) 261–275

13. Simonis, H.: Interactive problem solving in ECLiPSe. ECLiPSe User Group
Newsletter (2003)

14. Stergiou, K., Walsh, T.: The difference all-difference makes. In: IJCAI-99. (1999)
15. Shaw, P., Stergiou, K., Walsh, T.: Arc consistency and quasigroup completion. In:

ECAI-98 workshop on binary constraints. (1998)



16. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem
instances. In: AAAI-2000. (2000)

17. Dincbas, M., Simonis, H.: APACHE - a constraint based, automated stand allo-
cation system. In: Advanced Software Technology in Air Transport (ASTAIR’91).
(1991) 267–282

18. Simonis, H.: Building industrial applications with constraint programming. In
Common, H., Marche, C., Treinen, R., eds.: Constraints in Computational Logics
- Theory and Applications, Springer Verlag (2001)

19. Eppstein, D.: Nonrepetitive paths and cycles in graphs with application to Sudoku.
ACM Computing Research Repository (2005)

20. Wallace, M., Novello, S., Schimpf, J.: ECLiPSe : A platform for constraint logic
programming. ICL Systems Journal 12 (1997)

21. Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K., Wallace, M.G.:
ECLiPSe: An introduction. Technical Report IC-Parc-03-1, IC-Parc, Imperial Col-
lege London (2003)

22. Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving large combinatorial prob-
lems in logic programming. J. Log. Program. 8 (1990) 75–93

23. Puget, J.F.: A fast algorithm for the bound consistency of alldiff constraints. In:
AAAI. (1998) 359–366

24. Lopez-Ortiz, A., Quimper, C.G., Tromp, J., van Beek, P.: A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In: IJCAI. (2003)

25. Regin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI.
(1994) 362–367

26. Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: Speeding up constraint propagation by
redundant modeling. In Freuder, E.C., ed.: CP. Volume 1118 of Lecture Notes in
Computer Science., Springer (1996) 91–103

27. Beldiceanu, N., Katriel, I., Thiel, S.: Filtering algorithms for the same con-
straint. In: Proceedings of International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimisation Problems
(CP’AI’OR) 2004. (2004)

28. Gould, W.: The Times Su Doku, Book 1. The Times (2005)
29. Mepham, M.: The Daily Telegraph Sudoku. The Daily Telegraph (2005)
30. n/a: The Guardian Sudoku Book 1. Guardian Books (2005)
31. Norris, H.: The Independent Book of Sudoku Volume 1. The Independent (2005)
32. n/a: Daily Mail Sudoku. Associated Newspapers Ltd (2005)
33. Perry, J.: The Sun Doku. The Sun (2005)
34. various: Sudoku 1. Nikoli (1988) In Japanese.
35. various: Gekikara Sudoku 1. Nikoli (2004) In Japanese.
36. various: Gekikara Sudoku 2. Nikoli (2004) In Japanese.
37. n/a: Sudoku - the original hand-made puzzles. Puzzler 1 (2005)
38. Vorderman, C.: Carol Vorderman’s How to do Sudoku. Random House (2005)
39. Wilson, R.: How to solve Sudoku. The Infinite Ideas Company (2005)
40. Sinden, P.: The Little Book of Sudoku Volume 1. Michael O’Mara Books (2005)
41. Huckvale, M.: The Big Book of Su Doku. Orion (2005)
42. Royle, G.: Minimum Sudoku. http://www.csse.uwa.edu.au/∼gordon/

sudokumin.php (2005)
43. Royle, G.: Minimum Sudoku. http://www.csse.uwa.edu.au/∼gordon/sudoku17

(2005)
44. Stertenbrink, G., Meyrignac, J.C.: 100 Sudoku problems. http://magictour.

free.fr/top100 (2005)


