
Implementing Fast Heuristic Search Code

Ethan Burns and Matthew Hatem and Michael J. Leighton and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

eaburns, mhatem, mjr58, ruml at cs.unh.edu

Abstract

Published papers rarely disclose implementation details. In
this paper we show how such details can account for speedups
of up to a factor of 28 for different implementations of the
same algorithm. We perform an in-depth analysis of the most
popular benchmark in heuristic search: the 15-puzzle. We
study implementation choices in C++ for both IDA* and A*
using the Manhattan distance heuristic. Results suggest that
several optimizations deemed critical in folklore provide only
small improvements while seemingly innocuous choices can
play a large role. These results are important for ensuring
that the correct conclusions are drawn from empirical com-
parisons.

Introduction
Implementing efficient heuristic search code can be quite
difficult, especially for a new practitioner who has merely
read Russell and Norvig (2010) and is not familiar with all of
the tricks of the trade. This paper focuses on these undocu-
mented tricks. Our purpose is not to promote code optimiza-
tion over algorithmic improvements—we agree with the
commonly accepted truism that a better algorithm will out-
perform a better implementation (McGeoch 2012)—rather,
the goals of this paper are to indicate the performance of
an efficient tiles solver as a function of CPU performance,
demonstrate tricks that are used in state-of-the-art imple-
mentations such as Korf’s IDA* solver (Korf 1985), to show
which of these improvements have the greatest effect, and
to increase the overall quality of empirical work in heuristic
search by reducing the effect that programmer skill has on
the outcome of empirical comparisons.

Many of the results in this paper focus on solving time.
We argue that this is a necessary evil for heuristic search,
because there is currently no good theory to generate fine-
grained predictions of algorithmic performance that are suf-
ficient for comparing different techniques. Traditional com-
plexity analysis provides imprecise bounds on scaling be-
havior. Performance predictors such as those used in portfo-
lios (Xu et al. 2008) only predict the performance of an im-
plementation and not that of algorithmic techniques. Other
methods such as CDP (Zahavi et al. 2010) and BLFS (Rose,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Burns, and Ruml 2011) predict the number of nodes ex-
panded, however metrics such as node expansions aren’t in-
dicative of search performance since they do not account
for computational overhead. For example, all implementa-
tions shown in Table 1 expand the same number of nodes,
yet, there is over a 14× difference in solving times. Because
practitioners usually care about how quickly a problem is
solved, we are left comparing algorithms directly on solving
time.

The difference between a fast implementation and a slow
implementation of the same algorithm can be significant
enough to lead to incorrect conclusions from empirical stud-
ies. It can even be unfair when two algorithms have equally
‘slow’ implementations, as speed-ups can affect different al-
gorithms differently. Furthermore, reviewers often demand
state-of-the-art results. During a recent reviewer discussion,
one of us saw a review that said, “I have no confidence
that the authors’ algorithm is any faster than Korf’s origi-
nal IDA* code on these problems, and may in fact be a good
bit slower. Thus, there are really no relevant positive exper-
imental results in this paper, in my opinion.” There was no
claim that the results in question were incorrect or that the
paper’s algorithmic ideas were without merit, just that the
authors of the rejected paper were not familiar with all of
the tricks that are required to achieve state-of-the-art per-
formance. Currently, it can be difficult to find these tricks
without looking at Korf’s source code directly, which itself
does not indicate which optimizations are important. In this
paper, we remedy this problem.

We will focus on the two most popular heuristic search
algorithms, IDA* and A*, and the most popular benchmark
domain, the 15-puzzle. We aggregate and document the per-
formance impact of many common and uncommon imple-
mentation choices in a single paper that can be drawn upon
by heuristic search researchers, especially practitioners who
are new to the field. Even senior researchers may find some
of our results surprising. Full source code is available at
www.search-handbook.org/code/socs12.

IDA*
The 15-puzzle (Slocum and Sonneveld 2006) consists of a
4x4 board of 15 numbered tiles and a blank space into which
adjacent tiles can be slid. The goal is to take a given con-
figuration and to slide the tiles around until they are in the

25

Proceedings of the Fifth Annual Symposium on Combinatorial Search



goal configuration with the blank in the upper-left corner
and the tiles numbered 1–15 in left-to-right, top-to-bottom
order. The puzzle has 16!/2 = 10, 461, 394, 944, 000 reach-
able states, and so it is often infeasible to solve it using
a memory-bound search algorithm such as A* (Hart, Nils-
son, and Raphael 1968) with the classic Manhattan distance
heuristic that sums the horizontal and vertical distance from
each tile to its goal location. Iterative-deepening A* (IDA*,
Korf 1985) uses an amount of memory that is only linear in
the maximum search depth, and was the first algorithm to
reliably solve random 15-puzzle instances. IDA* performs
a series of f -value-bounded depth-first searches. When one
bounded search fails to find a solution, the bound is in-
creased to the minimum f value that was out-of-bounds on
the previous iteration and the search begins again.

The Base Implementation
We begin with a base implementation indicative of what may
be created by a new heuristic search researcher. Since re-
searchers often want to run experiments on multiple domains
using multiple algorithms, our base implementation requires
any search domain to implement a simple interface with five
virtual methods (which, in C++, are equivalent to singly-
indirect function calls): initial returns the initial state; h
returns the heuristic value; isgoal returns true if the given
state is a goal; expand returns a vector (in C++, this is a
dynamically sized array) containing information about the
successors of the given state; and release frees a search
state. From the search algorithm’s perspective, each state is
an opaque pointer that refers to an object for which the in-
ternal representation is unknown, allowing the same IDA*
code to be used across many different domains.

In the sliding tiles implementation, each state is a record
containing a field called blank to track the current blank po-
sition, a field h with the cost-to-go estimate computed at
generation, and an array tiles of 16 integers (we tried bytes,
however, they decreased performance of IDA* by a factor of
0.9), storing the tile at each board position. Given this rep-
resentation, the h, isgoal, and release functions are all
simple one-liners: h returns the h field; isgoal return true
if h = 0; and release uses C++’s delete keyword. The
initial function allocates and returns a new state with
tile positions specified by the program’s input.

Most of the domain’s implementation is in the expan-
sion function. Figure 1 shows high-level pseudo-code for
expand. This pseudo-code almost exactly matches the C++
code; in the real implementation each vector entry contains
not only a successor state but also the generating operator
represented as the destination blank position and the opera-
tor that would re-generate the parent state. This operator in-
formation is used to remove simple 2-cycles during search.
The constant Ntiles = 16 represents the number of entries
in the .tiles array of each state, and Width = 4 is the num-
ber of columns in the 4x4 tiles board.

The EXPAND function tests each operator (up, left, right,
and down, the same order used by Korf’s solver) for appli-
cability (lines 2, 4, 6, and 8), and for each applicable oper-
ator a new child is added to the kids vector (lines 3, 5, 7,
and 9). Each child is generated by creating a new state (line

EXPAND(State s)
1. vector kids // creates an empty vector
2. if s.blank ≥Width then
3. kids.push(KID(s, s.blank −Width))
4. if s.blank mod Width > 0 then
5. kids.push(KID(s, s.blank − 1))
6. if s.blank mod Width < Width − 1 then
7. kids.push(KID(s, s.blank + 1))
8. if s.blank < Ntiles −Width then
9. kids.push(KID(s, s.blank +Width))

10. return kids
KID(State s, int newblank )

11. State kid = new State
12. copy s.tiles to kid .tiles
13. kid .tiles [s.blank ] = s.tiles [newblank ]
14. kid .blank = newblank
15. kid .h = MANHATTAN-DIST(kid .tiles, kid .blank )
16. return kid

Figure 1: The base implementation’s expand function.

11), copying the parent’s tiles array (line 12), updating the
position of the tile that was moved (line 13, note that we
don’t bother to update kid .tiles [newblank ] = 0), tracking
the new blank position (line 14), and computing the Man-
hattan distance (line 15). Each node generation allocates a
new state record because, as mentioned before, the search
relies on opaque pointers to allow the same code to work for
multiple domains.

We ran our base implementation of IDA* on all 100
15-puzzle instances from Korf (1985). We used a Dell
PowerEdge T710 with dual quad-core Intel Xeon X5550
2.66Ghz processors and 48GB RAM running Ubuntu Linux.
All binaries were compiled with GCC version 4.4.3-
4ubuntu5.1 using the -O3 flag. The total search time re-
quired to solve all instances was 9,298 seconds.

Incremental Manhattan Distance
One popular optimization for the sliding tiles puzzle is to
compute the Manhattan distance value of each state incre-
mentally. Since only one tile moves at a time, the Manhattan
distance of a new state can be computed from its parent’s
by subtracting the Manhattan distance for the moving tile
and adding its new Manhattan distance. Our implementation
of this optimization is based on the one from Korf’s solver:
we pre-compute the change in Manhattan distance for every
possible single move of each tile and store them in a table
before searching. The heuristic computation then becomes
a table lookup and an addition (see Figure 3, line 27). With
this slight modification (46 additional lines of code, includ-
ing blank lines and comments), the new time to solve all 100
instances drops down to 5,476 seconds, almost a factor of 2
improvement.

Operator Pre-computation
We reduce expansion overhead even further by pre-
computing applicable operators—another optimization used
in Korf’s solver. Instead of using four if-statements to de-
termine whether the four positions adjacent to the blank are

26



EXPAND(State s)
17. vector kids // creates an empty vector
18. for i = 0 to optab [s.blank ] .n− 1 do
19. kids.push(KID(s, optab [s.blank ] .ops [i]))
20. return kids

Figure 2: The new expand function with an operator table.

NOPS(State s)
21. return optab [s.blank ] .n

NTHOP(State s, int n)
22. return optab [s.blank ] .ops [n]

APPLY(State s, int newblank )
23. Undo u = new Undo()
24. u.h = s.h; u.blank = s.blank
25. tile = s.tiles [newblank ]
26. s.tiles [s.blank ] = tile
27. s.h+ =mdincr [tile] [newblank ] [s.blank ]
28. s.blank = newblank

UNDO(State s, Undo u)
29. s.tiles [s.blank ] = s.tiles [u.blank ]
30. s.h = u.h; s.blank = u.blank
31. delete u

Figure 3: Changes for in-place modification.

legal, we can pre-compute the legal successor positions for
each of the 16 possible blank locations before searching and
store them in an ‘operator table.’ Figure 2 shows the new ex-
pand function. While this optimization only adds about 17
lines of code, it only improves the performance a little. The
new time for all 100 instances is reduced to 5,394 seconds,
only a 1.015 factor improvement.

In-place Modification
The main source of remaining overhead in the expansion
function is the copy performed when generating each new
successor (line 12 in Figure 1). Since IDA* only considers a
single node for expansion at a time, and because our recur-
sive implementation of depth-first search always backtracks
to the parent before considering the next successor, it is pos-
sible to avoid copying entirely. We will use an optimization
called in-place modification where the search only uses a
single state that is modified to generate each successor and
reverted upon backtracking. The benefits are threefold. First,
there is no need to copy the state. In any domain where the
cost of applying an operator plus the subsequent undo to re-
vert back to the parent is cheaper than the cost of copying
the state, avoiding the copy will be beneficial. The second
benefit is that there is no need to allocate successor states.
While memory is not a concern with depth-first search, the
cost of allocation can be quite expensive. Finally, because
only a single state is used, it is quite likely that this state will
remain in the cache for very fast access.

To handle in-place modification we add four methods and
one additional record type to our search domain interface.
The functions are: nops to get the number of applicable op-
erators in a state, nthop to get the nth operator, used to
eliminate simple 2-cycles, apply to apply an operator to a
state, and undo to revert the application of an operator. The

result of applying an operator is an ‘undo record’ that holds
information used by undo to revert change. For tiles, this
information is the heuristic value and blank position of the
parent. Figure 3 shows the modifications required to handle
in-place modification. Undo records are treated as opaque
pointers by the search algorithm, much as states were pre-
viously, and thus they are allocated on the heap. (Alloca-
tions could be avoided by keeping a stack of undo records,
however, the next optimization will remove the need for any
opaque pointers and all allocations). Using in-place modifi-
cation, the search time required is 2,179 seconds, approxi-
mately a 2.5 factor improvement over the previous version.

C++ Templates
The final optimization that we present for IDA* is to replace
virtual method calls with C++ templates. C++ templates are
a form of meta-programming that allow functions to be pa-
rameterized on a given type, or a class (many popular lan-
guages provide similar functionality). In C++, template in-
stantiation is similar to a find-and-replace, or a macro ex-
pansion that replaces references to our search domain with
the methods from the domain class itself. Just as before, we
parameterize the search algorithm on the search domain, ex-
cept instead of using virtual calls, the template instantiates
our search algorithm at compile-time with the given param-
eter class. This means that all virtual method calls are re-
placed with normal function calls that the compiler will then
inline. An additional benefit of using C++ templates for our
search algorithm is that the algorithm can refer directly to
the search state record defined by the domain, eliminating
any need for opaque pointers and all memory allocation.
The resulting machine code should look as though we wrote
the search algorithm specifically for our sliding tiles solver
when in fact it is generalized to any search domain that im-
plements our interface.

Using our template implementation along with the three
previous optimizations, all of the 100 tiles instances are
solved in 634 seconds. This is a 3.4 factor improvement over
the previous implementation and a 14.7 factor improvement
over our initial base implementation. In fact, our base imple-
mentation required more time to solve each of instances 60,
82, and 88 than our final implementation needed to solve the
entire set!

Operator Ordering
The choice of operator ordering can have a significant effect
on the performance of IDA*, as a good ordering can effec-
tively eliminate the final (largest) iteration of search and a
bad ordering will enumerate the entire iteration. There are
only 4! = 24 possible fixed operator orderings for the slid-
ing tile puzzle, so we solved Korf’s puzzle instances with
each one using our most optimized solver. Surprisingly, it
seems that not all instances are affected by operator order-
ing to the same degree. For example, operator order has a
significant effect on the solving time for instance 82 but has
seemingly no effect on instance 88. Also, half of the order-
ings seem to take about twice as long as the other half. The
best ordering on Korf’s 100 instances (up, right, left, down)

27



secs imp. nodes/sec
Base implementation 9,298 – 1,982,479
Incremental heuristic 5,476 1.7× 3,365,735
Oper. pre-computation 5,394 1.7× 3,417,218
In-place modification 2,179 2.3× 8,457,031
C++ templates 634 14.7× 29,074,838
Korf’s solver 666 14.0× 27,637,121

Table 1: IDA* performance on Korf’s 100 15 puzzles.

required 628 seconds to solve the entire set. The median or-
dering (up, down, left, right) needed 728 seconds and the
absolute worst ordering (left, down, up, right) needed 942
seconds. Korf’s operator ordering was the 2nd best ordering
for these instances.

Summary
Table 1 shows a summary of the performance of all of the
optimizations that we implemented for IDA*. As a refer-
ence, the performance of Korf’s implementation is shown
as the last row. Korf’s solver is written in C and it includes
all of the optimizations that were listed here, except for the
use of C++ templates which are unnecessary as the solver is
domain-specific. Korf’s solver is a bit slower than the fastest
implementation in this table, this is probably a product of
minor differences between the code generated by the C and
C++ compilers. The column labelled ‘imp.’ shows the im-
provement over the base implementation, e.g., the time re-
quired by the base implementation was 2.3 times more than
that required by the variant that uses all optimizations up
to and including in-place modification. Finally, the column
labeled ‘nodes/sec’ shows the expansion rate for each vari-
ant. All implementations in this table expanded a total of
18,433,671,328 nodes summed over all instances, so all im-
provements can be credited to the implementation, and not a
reduction in search effort. With the exception of operator
pre-computation, each optimization approximately halves
the time required to solve the instance set, with the final
implementation being greater than a factor of 14.7 improve-
ment over the base implementation.

Based on Table 1, we would recommend using all of these
optimizations in an efficient implementation of IDA* with
the exception of operator pre-computation which seems un-
necessary. In some cases it may be impossible to implement
the template optimization. In these cases, the performance
benefits that we gained with templates can instead be real-
ized by sacrificing generality and implementing a domain-
specific solver.

Scaling Study
To allow comparison to our timing results, we performed
a study of our optimized solver’s performance across a va-
riety of different hardware. We compare the results of the
SPECint base rating of various machines (from the SPEC
CPU 2006 benchmark set, which evaluates the integer pro-
cessing capabilities of hardware) to the time required for our
IDA* implementation to solve all 100 of Korf’s 15-puzzles.

Figure 4a shows the scaling behavior across six differ-
ent machines with SPECint base numbers of: 15.8, 16.5,

22.2, 29.3, 35.6, and 40.0; the greater the number, the faster
the hardware performed on the CPU 2006 benchmark. The
circles represent the actual data points and the dashed line
shows the line of best fit (y = −10.8x+ 973). As expected,
machines with greater SPECint base numbers tended to
solve our instance set faster; the slowest hardware required
50% more time than the fastest. Using these results, we hope
that future researchers can find their machines on the SPEC
website (www.spec.org) to estimate how fast an efficient im-
plementation should perform on Korf’s instance set.

Case Studies
To validate the results from the previous section, we per-
formed three case studies where independently created
search implementations were subjected to the optimizations
described above. These case studies further emphasize the
importance of using the correct optimizations, as in two
cases an incorrect conclusion was drawn from an empirical
study using an unoptimized IDA* implementation.

Objective Caml
First, we compare three sliding tile solvers written in the
Objective Caml (OCaml) programming language. The first
two were existing solvers that were written to operate on
many different search domains. The first solver was the least
optimized; it only included the incremental Manhattan dis-
tance optimization and required 24,186 seconds to solve all
of Korf’s instances. The second solver included all optimiza-
tions listed above except for compile-time templates as they
are not available in the language; it required 3,261 seconds
to solve all instances, a 7.4 factor improvement on its prede-
cessor. Finally, we wrote a new implementation specifically
for tiles solving, i.e., it did not operate on an abstract repre-
sentation of the search domain. The new solver was able to
solve all instances in 852 seconds, a 3.8x improvement over
the second implementation, which approximately matches
the improvement we saw when switching the C++ imple-
mentation to use templates, and a 28× improvement over
the first, unoptimized version!

Short Circuit
The next implementation we consider was created to eval-
uate the state-of-the-art hierarchical search algorithm called
Short Circuit (Leighton, Ruml, and Holte 2011). IDA* was
already implemented in Short Circuit’s C++ code base; it
used the same state and goal representation, successor func-
tion, and goal test as the Short Circuit algorithm, but none
of the optimizations described above were present in ei-
ther IDA* or Short Circuit. The initial IDA* implementation
took 6,162 seconds to solve all of Korf’s 100 15-puzzles and
Short Circuit was nearly 3 times faster, requiring 2,066 sec-
onds. We then modified both Short Circuit and IDA* taking
into account the optimizations described above where ap-
plicable. The speedups achieved by the new IDA* over the
base implementation were: incremental Manhattan distance
computation 2.0×, operator pre-computation only 2.1×, in-
place modification 3.6×, and templates only gave a 4.8×
speedup. With the exception of the template optimization,

28



(a) (b) (c)

Figure 4: Solving time versus SPECint base (a), and PEDAL compared to the original (b) and improved (c) IDA*.

which surprisingly didn’t boost performance as much as it
did for our optimized solver, these numbers tend to agree
with the results in Table 1.The new IDA* implementation
was able to solve all 100 instances in 1,316 seconds. Only
two of the optimizations were applicable to Short Circuit,
operator pre-computation and removal of virtual methods,
allowing Short Circuit to solve all instances in 1,886 sec-
onds. As we can see, the 3× performance advantage that
Short Circuit had over IDA* can be attributed to inefficien-
cies in the implementation. An IDA* implementation with
state-of-the-art optimization techniques is faster than Short
Circuit in this domain. Note that the results presented by
Leighton, Ruml, and Holte (2011) are still valid, as IDA* on
the 15-puzzle with Manhattan distance is expected to out-
perform Short Circuit. Short Circuit was also shown to work
well on other domains better suited for hierarchical search.

PEDAL
Hatem, Burns, and Ruml (2011) introduced a new external-
memory search algorithm called Parallel External search
with Dynamic A* Layering (PEDAL) While the unit-cost
15 puzzle is not a domain for which PEDAL was specif-
ically designed, PEDAL was shown to compare favorably
to IDA* on Korf’s 100 instances. During the presentation
of our paper at AAAI 2011, an audience member pointed
out that Korf’s solver was significantly faster than the solver
used in the PEDAL comparison. 1

We have updated both the IDA* and PEDAL implemen-
tations using all of the optimizations described above where
applicable with the exception of templates, as this would
have required a major change to the PEDAL code base. Fig-
ure 4b shows the results of the original comparison using
the original IDA* operator ordering from the paper, and Fig-
ure 4c shows the results with improved implementations of
PEDAL and IDA*, using Korf’s operator ordering. The axes
of these plots show the time required for PEDAL (y axis) and
IDA* (x axis) to solve each instance, represented by a circle
in the plot. The diagonal line shows y = x, and circles above
the line are instances where IDA* performed better, whereas
circles below represent instances where PEDAL performed
better. With these implementations, PEDAL no longer out-
performs IDA*, however further optimization of PEDAL’s
I/O may change the picture again yet again.

1This remark motivated the research leading to this paper.

A*
We now turn to the most popular heuristic search algorithm
of all, A* (Hart, Nilsson, and Raphael 1968).

The Base Implementation
In our base implementation of A*, the open list is imple-
mented as a binary min heap ordered on f and breaking ties
by preferring high g, the closed list is implemented as a hash
table using chaining to resolve collisions, and the fields of
our state record were changed to bytes to conserve memory.
The A* algorithm is modeled after the one described in the
2nd (older) edition of Russell and Norvig (2003) it allows
duplicate search states to each have a node on the open list.
This implementation required 1,695 seconds to solve all of
the 100 instances with the exception of three instances that
exhausted a 46 gigabyte memory limit (instances 60, 82, and
88). For reference, our heavily optimized IDA* solver re-
quired only 370 seconds to solve these 97 instances. When
we include both the incremental Manhattan distance and the
operator table optimizations as described for IDA*, solving
time only decreases to 1,513 seconds. This is because A*
spends much of its time operating on its open list and per-
forming hash table lookups, so these optimizations have lit-
tle effect.

Detecting Duplicates on Open
One common optimization is to maintain only a single node
for each state and to update the nodes location on the open
list if it is re-encountered via a cheaper path. This optimiza-
tion has become so common that it is now used in the A*
pseudo-code in the 3rd (the latest as of this writing) edition
of Russell and Norvig (2010), and in the Heuristic Search
book by Edelkamp and Schrödl (2012).

With this optimization, each search state is represented
by a single canonical node that is added to a hash table the
first time the state is generated. Each time a new state is
generated, the hash table is checked for the canonical node,
and if the canonical node is found and the newly generated
state was reached via a cheaper path then the canonical node
is updated. To update a node, its g value is set to the new
lower g value, its f value is adjusted appropriately, its par-
ent node is changed to be the parent that generated the node
via the cheaper path, and finally its open list position is up-
dated based on its new f value (note that we don’t bother

29



to check that the duplicate resides on the open list: because
the Manhattan distance heuristic is consistent, the duplicate
must be on open if a cheaper path to it was found). When
generating a state, if the canonical node is not found in the
hash table then it is the first time that the state was generated,
so it is added to both the open list and hash table, becoming
the canonical representation.

Using this optimization, the solving time for the 97 in-
stances that were solvable within the memory limit was
1,968 seconds, which is slower than the base implementa-
tion. The reason for this slowdown is likely because this op-
timization requires a hash table lookup for each node genera-
tion. The hash table lookup is relatively expensive compared
to the cost of a node expansion for the sliding tiles domain.
Additionally, there are very few duplicates in the sliding tiles
puzzle and so the extra testing for duplicates on the open
list is not very helpful. This is a rather surprising result as
this optimization seems to be quite ubiquitous. We suspect
that in domains where hash table operations are inexpensive
compared to the cost of expanding a node (as is the case in
domain-independent planning) and domains where there are
many duplicates (as is the case in grid pathfinding) this opti-
mization is much more beneficial. Due to the degradation in
performance, this optimization is not used in the following
subsections, however, we will revisit it briefly after we speed
up our closed list operations.

C++ Templates
One of the most beneficial optimizations for IDA* was the
switch from virtual method calls and requiring allocation for
opaque pointers to the use of C++ templates. A* can be
modified similarly. With IDA*, one of the benefits of this
optimization was obviating the need for any memory allo-
cation. In A*, the amount of allocation can be reduced with
this optimization as the domain interface doesn’t need to re-
turn any heap allocated structures, however, A* still must
allocate search nodes. Using this optimization, the time to
solve the 97 instances drops to 1,273 seconds. In addition,
with this optimization, the solver is now able to solve both
instance 60 and 82 within the memory available on our ma-
chine. The time required to solve all instances except for 88
was 1,960 seconds.

Pool Allocation
A* is a memory-bound algorithm. This means that it will
continue to consume more and more memory as it contin-
ues to run. Memory allocation can be rather expensive and
to alleviate the cost it is often beneficial to allocate memory
in a small number of large chunks instead of large number
of small chunks. We modified our template-based A* solver
to use an allocation pool to allocate nodes. The pool imple-
mentation is rather simple: it allocates blocks of 1,024 nodes
at a time (other values were tried with little effect). A node
pool reduces the number of expensive heap allocations, and
subsequently the memory overhead required to track many
small heap-allocated nodes, and it has potential to increase
cache locality by ensuring that nodes reside in contiguous
blocks of memory. Using pool-based allocation, our solver
was able to solve all 100 instances in 2,375 seconds and it

required only 1,184 seconds for the 97 instances solved by
the base. So far we have only achieved a 1.4 factor improve-
ment from where we started.

Packed State Representations
The reason that we have yet to see a big improvement is that
A* spends much of its time operating on the open and closed
lists. Each closed list operation requires hashing a 16-entry
array and possibly performing equality tests on this array
to resolve hash collisions. Our open list is implemented as
a binary heap which has O(log2 n) performance for insert,
remove, and update operations. This optimization and the
following ones attempt to optimize the access to data struc-
tures. The first such optimization is targeted at both reducing
memory usage and the cost of hash table operations.

For the 15-puzzle, the tiles are numbered 1–15, and thus
each tile can be represented in 4 bits. Our current imple-
mentation uses a byte for each tile. We can half the memory
requirement for each tile state by packing the tiles into 8
bytes. On the machine used in our experiments this is the
size of a single word. As a consequence, our search states
will take up half of the amount of memory, our hash func-
tion can simply return the packed state representation, and
equality tests performed by our hash table can be simplified
to equality test between two numbers containing our packed
state representation. The resulting solver was able to solve
all 100 of Korf’s 15-puzzle instances in 1,896 seconds, and
it only needed 1,051 seconds to solve the 97 instances solved
by the base.

Intrusive Data Structures
Another way to optimize the hash table is to make it an ‘in-
trusive’ hash table. Our hash table resolves collisions via
chaining, and entries added to the hash table are wrapped
in a record with two pointers: one to the entry and one to the
next element in the chain, forming a linked list. Instead of al-
locating a record for each hash table entry, we can ‘intrude’
on the entries being stored in the table by requiring them to
provide a next pointer for the hash table’s use. This reduces
the memory requirement of A* by at least 16 bytes per node
on a 64 bit machine, and it also reduces the number of al-
locations. By using an intrusive hash table, our solving time
for all 100 instances was 1,269 seconds and only 709 sec-
onds for the 97 instances solved by the base implementation.
Using all of these optimizations, we finally have achieved a
2.4× performance improvement over the base.

Since the last two optimizations targeted the performance
of the hash table, it raises the question as to whether or not
removing duplicate nodes from the open list would now be
beneficial. Previously, this optimization was disregarded be-
cause the closed list operations were too costly to realize a
benefit. Unfortunately, removing duplicate nodes from the
open list is still detrimental to performance even with the re-
duction in the cost of accessing the hash table. Using all of
these optimizations, the solving time when duplicate nodes
are removed from the open list increases to 1,944 seconds
for the set of 100 instances and 1,049 seconds for the 97 in-
stances solved by the base solver. We conclude that it is not

30



worth avoiding duplicate nodes on the open list in a sliding
tile puzzle solver.

Array-based Priority Queues
Now, we will take advantage of the fact that the sliding tiles
domain has only unit-cost edges. This allows us to replace
the binary heap used for our open list with a more efficient
data structure: a 1-level bucket priority queue (Dial 1969).
A 1-level bucket priority queue is simply an array indexed
by f values, and each entry in the array is a list of the nodes
on the priority queue with the corresponding f value. In the
15-puzzle, there are only a small number of possible f val-
ues, and each of these possible values is a small integer. An
1-level bucket priority queue allows constant-time insert, re-
move, and update operations in our open list.

Insertion into the priority queue simply adds the inserted
node to the front of the list at the array index corresponding
to the node’s f value. Since there is a fixed number of possi-
ble f values, lookup can be performed by quickly finding the
smallest array index with a non-empty list. This operation
can be sped up slightly by keeping track of a conservative
estimate of the minimum array index on each insertion op-
eration (see Edelkamp and Schrödl (2012) for details). This
is a big improvement over theO(log2 n) operations a binary
heap, especially considering the fact that the open list can
contain hundreds of millions of nodes and it is accessed in
a very tight loop. Using a 1-level bucked priority queue, our
A* solver was able to solve all 100 instances in 727 seconds
and the 97 instances solved by the base implementation in
only 450 seconds. At this point, our A* solver is nearly on
par with our IDA* solver in terms of time.

One thing that is lost with the 1-level bucket priority
queue is good tie breaking. Recall that our binary heap or-
dered nodes by increasing f values, breaking ties by prefer-
ring nodes with higher g. The reasoning is that the goal can
be found more quickly in the final f layer of search. The
1-level bucket priority queue achieves constant time inser-
tions and removals by appending to and removing from a
list, leaving the list itself unsorted; ties are broken in last-in-
first-out order. Our final optimization uses a nested variant of
the 1-level bucket priority queue. In essence, this new struc-
ture is a 1-level bucket priority queue ordered on f where
each entry is in fact another 1-level bucket priority queue or-
dered on g (this is slightly different from the 2-level bucket
priority queue described by Edelkamp and Schrödl 2012, as
our goal is to introduce tie-breaking and the 2-level queue is
to reduce the size of the structure in the face of many distinct
f values). Since insertion and removal are constant time for
both the outer and inner queues, they are also constant time
for the 2-dimensional priority queue. Using this final opti-
mization, our solver was able to solve all 100 instances in
516 seconds, and the 97 instances solved by the base only
needed 290 seconds, giving a 5.8× improvement over the
base implementation.

Summary
Table 2 shows a summary of the results for all optimiza-
tions on the 97 instances solved by the base implementa-
tion. We have included a column showing the maximum

secs imp. GB imp.
Base implementation 1,695 – 28 –
Incr. MD and oper. table 1,513 1.1× 28 1.0×
Avoiding dups on open 1,968 0.9× 28 1.0×
C++ templates 1,273 1.3× 23 1.2×
Pool allocation 1,184 1.4× 20 1.4×
Packed states 1,051 1.6× 18 1.6×
Intrusive data structures 709 2.4× 15 1.9×
Avoiding dups on open (2) 1,049 1.6× 14 2.0×
1-level bucket open list 450 3.8× 21 1.3×
Nested bucket open list 290 5.8× 11 2.5×

Table 2: A* performance on Korf’s 100 15 puzzles, exclud-
ing instances 60, 82, and 88.

secs GB nodes/sec
Pool allocation 2,375 45 656,954
Packed states 1,896 38 822,907
Intrusive data structures 1,269 29 1,229,574
Avoiding dups on open (2) 1,944 28 798,349
1-level bucket open list 727 36 3,293,048
Nested bucket open list 516 27 3,016,135

Table 3: A* performance on Korf’s 100 15 puzzles.

amount of memory that A* required to solve these instances,
given in gigabytes. Overall, the final implementation was
5.8× faster than the base implementation and required 40%
of the memory to solve all 97 instances. All variants ex-
panded 922,237,451 nodes on this set with the exception
of the two variants that disallowed duplicates on the open
list which both expanded 917,203,704 nodes total and the 1-
level bucket priority and its nested variant which expanded
1,572,478,563 and 922,124,752 nodes respectively. Except
for the 1-level bucket open list, all of these variants expanded
a similar number of nodes and thus the performance im-
provement is not from reducing the search effort, but rather
from reducing the amount of per-node computation.

Given these results, the nested bucket-based priority
queue appears to be the most important optimization for A*
on this domain. The bucket priority queues performed so
much better than a binary heap that it seems unfair to handi-
cap A* with a binary heap on domains that have unit-cost ac-
tions. In addition, a reasonable implementation should also
use incremental Manhattan distance, pooled node allocation,
and packed states as they should be applicable in any imple-
mentation, they all increase performance and decrease mem-
ory usage. C++-style templates are recommended if they
are available. Intrusive data structures are mildly beneficial,
however, they can be difficult to reason about and increase
the complexity of the implementation, thus we would deem
them unnecessary in the general case.

Finally, since six different settings were able to solve all
100 instances, we have included results for these implemen-
tations on all of the instances in Table 3. This table also in-
cludes a nodes per second column for comparison with the
IDA* results in Table 1. A* with the nested bucket-based
priority was faster than IDA*, however it required about
27 gigabytes compared to IDA*’s 12 megabytes. Addition-
ally, A*’s expansion rate was significantly less than that of
IDA*; the fastest A* implementation expanded nodes ap-

31



proximately 9× slower than the fastest IDA* implemen-
tation. The reason that A* was faster overall was because
IDA* expands roughly 12× more nodes in total.

Discussion

As discussed above, we have verified some of our results
using an IDA* implementation written in Objective Caml.
OCaml is a high-level, garbage collected, programming lan-
guage and thus we would expect that these results would
also carry over to other languages such as Java. (Optimized
Java code is available at the URL given earlier.) Future work
in this area may find it interesting to look at the impact of
garbage collection on search performance. We speculate that
algorithms like A*, which allocate a lot of nodes that remain
in memory for the life of the search, perform poorly with
garbage collectors that are tuned for allocating many short-
lived objects (Chailloux, Manoury, and Pagano 2000).

The expansion rates of our IDA* solver show that node
expansion in the sliding tile puzzle is very cheap, especially
when compared to other uses of heuristic search, such as
domain-independent planning where expansion rates on the
order of tens of thousands of nodes per second are com-
mon (Zhou and Hansen 2011). This raises the question of
the usefulness of the sliding tile puzzle as a popular proving
ground for new search technology. Its expansion rate ren-
ders useless many techniques for reducing the number of
node expansions at the expense of even the slightest over-
head. Techniques such as ordering successors and eliminat-
ing cycles by keeping the current search trajectory in a hash
table are costly enough that we didn’t even consider them
for our experiments. In other domains with a greater cost
for node expansion or heuristic computation, such as the
Sokoban (Junghanns and Schaeffer 2001), these techniques
may be crucial for achieving high performance.

Given that optimizations can account for over an order
of magnitude performance difference between implemen-
tations of the same algorithm, it is important to consider
whether the type of competitive testing used in most papers
on heuristic search is the right approach. Hooker (1995) ar-
gues against the use of such testing, claiming that it is nearly
unscientific. Instead, Hooker says we should conduct exper-
iments that tell why algorithms behave the way that they do,
instead of merely determining which is faster. Ruml (2010)
also argues against the idea of state-of-the-art performance,
in favor of a deeper understanding of algorithms. The com-
mon theme is to relieve scientists from the burden of tedious
code optimization, freeing time for the actual study of algo-
rithms. We view this paper as aligned with these ideas: by
accumulating a variety of well-known and documented opti-
mizations, it will be easier to produce tuned implementations
and researchers can focus on algorithm design instead. In ad-
dition, this will lower the barrier of entry to the the heuristic
search community for new researchers.

Although we see work on the 15-puzzle as a necessary
first step, the next work in this direction should explore per-
formance on the 24-puzzle with the latest PDB heuristics.

Conclusions
We argue that a state-of-the-art implementation is necessary
to ensure the accuracy of empirical results in algorithmic
comparisons. To this end, we have presented a set of op-
timizations for the two most popular heuristic search algo-
rithms, IDA* and A*, on the most popular heuristic search
benchmark, the 15-puzzle. Given our results, we have rec-
ommended optimizations that we deem crucial for any seri-
ous implementation. To aid other researchers in determining
whether or not their implementation is on par with the per-
formance that reviewers expect, we have presented a study
showing how we expect performance to scale with different
hardware. We hope that the results presented in this paper
will help to increase the quality of empirical work in heuris-
tic search by helping researchers draw the correct conclu-
sions when comparing search algorithms.

Acknowledgements
We acknowledge support from NSF (grant IIS-0812141) and
the DARPA CSSG program (grant HR0011-09-1-0021).

References
Chailloux, E.; Manoury, P.; and Pagano, B. 2000. Développement
d’applications avec Objective CAML. O’Reily. An English trans-
lation is available at http://caml.inria.fr/pub/docs/oreilly-book/.
Dial, R. 1969. Shortest-path forest with topological ordering.
CACM 12(11):632–633.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search: Theory and
Applications. Elsevier.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transac-
tions on Systems Science and Cybernetics SSC-4(2):100–107.
Hatem, M.; Burns, E.; and Ruml, W. 2011. Heuristic search for
large problems with real costs. In Proceedings of AAAI-2011.
Hooker, J. N. 1995. Testing heuristics: We have it all wrong. Jour-
nal of Heuristics 1:33–42.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing gen-
eral single-agent search methods using domain knowledge. AIJ
129:219–251.
Korf, R. E. 1985. Iterative-deepening-A*: An optimal admissible
tree search. In Proceedings IJCAI-85, 1034–1036.
Leighton, M.; Ruml, W.; and Holte, R. 2011. Faster optimal and
suboptimal hierarchical search. In Proceedings SoCS-11.
McGeoch, C. C. 2012. A Guide to Experimental Algorithmics.
Cambridge University Press.
Rose, K.; Burns, E.; and Ruml, W. 2011. Best-first search for
bounded-depth trees. In Proceedings of SoCS-11.
Ruml, W. 2010. The logic of benchmarking: A case against state-
of-the-art performance. In Proceedings of SoCS-10.
Russell, S., and Norvig, P. 2nd edition 2003, 3rd edition 2010.
Artificial Intelligence: A Modern Approach.
Slocum, J., and Sonneveld, D. 2006. The 15 puzzle book: how it
drove the world crazy. Slocum Puzzle Foundation.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2008. Satzilla:
portfolio-based algorithm selection for sat. JAIR 32(1):565–606.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010. Predict-
ing the performance of IDA* using conditional distributions. JAIR
37:41–83.
Zhou, R., and Hansen, E. 2011. Dynamic state-space partitioning
in external-memory graph search. In Proceedings of ICAPS-11.

32




