
Algorithmen und Datenstrukturen
C6. Kürzeste Pfade: Algorithmen

Gabriele Röger

Universität Basel

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: High-Level-Perspektive

Algorithmus von Dijkstra (für nicht-negative Kantengewichte)

Baue Kürzeste-Pfade-Baum ausgehend von Startknoten s auf:

Betrachte Knoten (die noch nicht im Baum sind) in
aufsteigender Reihenfolge ihres Abstandes von s.

Nimm Knoten in Baum auf und relaxiere ausgehende Kanten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 ∞
2 ∞
3 ∞
4 ∞
5 ∞
6 ∞
7 ∞

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 18

2 8

3 5

4 ∞
5 ∞
6 ∞
7 ∞

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 18

2 8

3 5

4 ∞

5 17

6 ∞

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 ∞

5 14

6 ∞

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 23

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 23

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 20

7 18

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 20

7 18

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 20

7 18

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Datenstrukturen

edge to: knotenindiziertes Array, das an Stelle v
die letze Kante des kürzesten bekannten Pfades enthält.

distance: knotenindiziertes Array, das an Stelle v die Kosten
des kürzesten bekannten Pfades vom Startknoten zu v enthält.

pq: indizierte Priority-Queue von Knoten

Knoten noch nicht im Baum
Bereits ein Pfad zu dem Knoten bekannt
Sortiert nach Kosten des kürzesten bekannten Pfades
zu dem Knoten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Datenstrukturen

edge to: knotenindiziertes Array, das an Stelle v
die letze Kante des kürzesten bekannten Pfades enthält.

distance: knotenindiziertes Array, das an Stelle v die Kosten
des kürzesten bekannten Pfades vom Startknoten zu v enthält.

pq: indizierte Priority-Queue von Knoten

Knoten noch nicht im Baum
Bereits ein Pfad zu dem Knoten bekannt
Sortiert nach Kosten des kürzesten bekannten Pfades
zu dem Knoten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Datenstrukturen

edge to: knotenindiziertes Array, das an Stelle v
die letze Kante des kürzesten bekannten Pfades enthält.

distance: knotenindiziertes Array, das an Stelle v die Kosten
des kürzesten bekannten Pfades vom Startknoten zu v enthält.

pq: indizierte Priority-Queue von Knoten

Knoten noch nicht im Baum
Bereits ein Pfad zu dem Knoten bekannt
Sortiert nach Kosten des kürzesten bekannten Pfades
zu dem Knoten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Dijkstras Algorithmus

1 class DijkstraSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 pq = IndexMinPQ()

6 self.distance[start_node] = 0

7 pq.insert(start_node, 0)

8 while not pq.empty():

9 self.relax(graph, pq.del_min(), pq)

10

11 def relax(self, graph, v, pq):

12 for edge in graph.adjacent_edges(v):

13 w = edge.to_node()

14 if self.distance[v] + edge.weight() < self.distance[w]:

15 self.edge_to[w] = edge

16 self.distance[w] = self.distance[v] + edge.weight()

17 if pq.contains(w):

18 pq.change(w, self.distance[w])

19 else:

20 pq.insert(w, self.distance[w])

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Korrektheit

Theorem

Dijkstras Algorithmus löst das Single-Source-Shortest-Paths-
Problem in Digraphen mit nicht-negativen Gewichten.

Beweis.

Ist v von Startknoten erreichbar, wird jede ausgehende Kante
e = (v ,w) genau einmal relaxiert (wenn v relaxiert wird).

Dann gilt distance[w] ≤ distance[v] + weight(e).

Ungleichung bleibt erfüllt:

distance[v] wird nicht mehr verändert, da Wert minimal war
und es keine negativen Kantengewichte gibt.
distance[w] wird höchstens kleiner.

Sind alle erreichbaren Knoten relaxiert, ist
Optimalitätsbedingung erfüllt.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr ähnlich zu Eager Prim-Algorithmus für
minimale Spannbäume

Beide bauen sukzessive einen Baum auf

nächster Knoten Prim: minimale Distanz zu bisherigem Baum.

nächster Knoten Dijkstra: minimale Distanz vom Startknoten.

included nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.

Laufzeit O(|E | log |V |) und Platzbedarf O(|V |) direkt übertragbar.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr ähnlich zu Eager Prim-Algorithmus für
minimale Spannbäume

Beide bauen sukzessive einen Baum auf

nächster Knoten Prim: minimale Distanz zu bisherigem Baum.

nächster Knoten Dijkstra: minimale Distanz vom Startknoten.

included nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.

Laufzeit O(|E | log |V |) und Platzbedarf O(|V |) direkt übertragbar.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Azyklische Graphen

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Zykelfreiheit ausnutzen

Gegeben: Azyklischer, gewichteter Digraph

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

Können wir die Zykelfreiheit beim Finden kürzester Pfade nutzen?

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 ∞
2 ∞
3 ∞
4 ∞
5 ∞
6 ∞
7 ∞

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 8

3 5

4 ∞
5 ∞
6 ∞
7 ∞

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 8

3 5

4 21

5 ∞

6 31

7 ∞

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 17

6 31

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 17

6 31

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 9

6 31

7 21

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 9

6 15

7 13

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 9

6 12

7 13

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 9

6 12

7 13

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Theorem

Theorem

Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem für kantengewichtete,
azyklische Digraphen in Zeit O(|E |+ |V |) gelöst.

Beweis.

Jede Kante e = (v ,w) wird genau einmal relaxiert. Direkt
danach gilt distance[w] ≤ distance[v] + weight(e).

Ungleichung gilt bis zur Terminierung

distance[w] wird nie grösser.
distance[v] wird nicht mehr verändert, da
alle eingehenden Kanten aufgrund der
topologischen Sortierung bereits relaxiert wurden.

→ Optimalitätskriterium ist bei Terminierung erfüllt.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Theorem

Theorem

Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem für kantengewichtete,
azyklische Digraphen in Zeit O(|E |+ |V |) gelöst.

Beweis.

Jede Kante e = (v ,w) wird genau einmal relaxiert. Direkt
danach gilt distance[w] ≤ distance[v] + weight(e).

Ungleichung gilt bis zur Terminierung

distance[w] wird nie grösser.
distance[v] wird nicht mehr verändert, da
alle eingehenden Kanten aufgrund der
topologischen Sortierung bereits relaxiert wurden.

→ Optimalitätskriterium ist bei Terminierung erfüllt.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Längste Pfade

Definition (Längste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?

Falls ja, finde den Pfad mit maximalem Gewicht.

Multipliziere alle Kantengewichte mit −1 und verwende
Kürzeste-Pfade-Algorithmus.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Längste Pfade

Definition (Längste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?

Falls ja, finde den Pfad mit maximalem Gewicht.

Multipliziere alle Kantengewichte mit −1 und verwende
Kürzeste-Pfade-Algorithmus.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Kritischer Pfad

Gegeben:

Menge von Aufgaben a, jede benötigt gegebene Zeit ta

Bedingungen a→ a′, dass a fertiggestellt sein muss, bevor a′

begonnen werden kann (in lösbaren Problemen zykelfrei).

Frage:

Annahme: Beliebig viele Aufgaben parallel ausführbar

Wie lange benötigen Sie für die Erledigung aller Aufgaben?

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Kritischer Pfad

Gegeben:

Menge von Aufgaben a, jede benötigt gegebene Zeit ta

Bedingungen a→ a′, dass a fertiggestellt sein muss, bevor a′

begonnen werden kann (in lösbaren Problemen zykelfrei).

Frage:

Annahme: Beliebig viele Aufgaben parallel ausführbar

Wie lange benötigen Sie für die Erledigung aller Aufgaben?

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen

Knoten s, e + für jede Aufgabe a zwei Knoten as und ae
für alle a:

Kante (s, as) mit Gewicht 0
Kante (ae, e) mit Gewicht 0
Kante (as, ae) mit Gewicht ta

für jede Bedingung a→ a′ Kante (ae, a
′
s) mit Gewicht 0

Kritischer Pfad für Aufgabe a ist längster Pfad von s zu as.
Wähle Startzeit für a als Gewicht eines kritischen Pfades.
→ Ergibt optimale Gesamtausführungszeit
→ (= Gewicht von längstem Pfad von s zu e)

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen

Knoten s, e + für jede Aufgabe a zwei Knoten as und ae
für alle a:

Kante (s, as) mit Gewicht 0
Kante (ae, e) mit Gewicht 0
Kante (as, ae) mit Gewicht ta

für jede Bedingung a→ a′ Kante (ae, a
′
s) mit Gewicht 0

Kritischer Pfad für Aufgabe a ist längster Pfad von s zu as.
Wähle Startzeit für a als Gewicht eines kritischen Pfades.
→ Ergibt optimale Gesamtausführungszeit
→ (= Gewicht von längstem Pfad von s zu e)

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen

Knoten s, e + für jede Aufgabe a zwei Knoten as und ae
für alle a:

Kante (s, as) mit Gewicht 0
Kante (ae, e) mit Gewicht 0
Kante (as, ae) mit Gewicht ta

für jede Bedingung a→ a′ Kante (ae, a
′
s) mit Gewicht 0

Kritischer Pfad für Aufgabe a ist längster Pfad von s zu as.
Wähle Startzeit für a als Gewicht eines kritischen Pfades.
→ Ergibt optimale Gesamtausführungszeit
→ (= Gewicht von längstem Pfad von s zu e)

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Bellman-Ford-Algorithmus

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Problem

Bei negativen Kantengewichten kann es negative Zyklen
geben, d.h. Zyklen, bei denen die Summe der Kantengewichte
negativ ist.

Liegt ein Knoten eines solchen Zyklus auf einem Pfad von s
nach v , können wir Pfade finden, deren Gewicht niedriger als
jeder gegebene Wert ist.
→ kein korrekt gestelltes Problem

Alternative Fragestellung: Finde kürzesten einfachen Pfad?
→ NP-schweres (= sehr schwieriges) Problem

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Fragestellung

In vielen praktischen Anwendungen sind negative Zyklen ein
Hinweis auf einen Modellierungsfehler.

Neue Fragestellung

Gegeben: Gewichteter Digraph, Startknoten s

Gefragt: Ist von s aus ein negativer Zyklus erreichbar?
Falls nein, berechne den Kürzeste-Pfade-Baum
zu allen erreichbaren Knoten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Bellman-Ford-Algorithmus: High-Level-Perspektive

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus

Initialisiere distance[s] = 0 für Startknoten s,
distance[n] =∞ für alle anderen Knoten.

Dann |V | Durchläufe, in denen
jeweils alle Kanten relaxiert werden.

Proposition

Das Verfahren löst das Single-Source-Shortest-Paths-Problem für
Graphen ohne negative Zyklen in Zeit O(|E ||V |) und mit
zusätzlichem Speicher O(|V |).

Beweisidee: Nach i Durchgängen ist jeder Pfad zu v mindestens so
kurz wie jeder Pfad zu v mit höchstens i Kanten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Bellman-Ford-Algorithmus: High-Level-Perspektive

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus

Initialisiere distance[s] = 0 für Startknoten s,
distance[n] =∞ für alle anderen Knoten.

Dann |V | Durchläufe, in denen
jeweils alle Kanten relaxiert werden.

Proposition

Das Verfahren löst das Single-Source-Shortest-Paths-Problem für
Graphen ohne negative Zyklen in Zeit O(|E ||V |) und mit
zusätzlichem Speicher O(|V |).

Beweisidee: Nach i Durchgängen ist jeder Pfad zu v mindestens so
kurz wie jeder Pfad zu v mit höchstens i Kanten.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Effizientere Variante

Ändert sich distance[v] in Durchgang i nicht, ändert auch
keine Relaxierung einer von v ausgehenden Kante in
Durchgang i + 1 etwas.

Idee: Merke dir Knoten mit veränderter distance in Queue.

In der Praxis deutlich schneller, auch wenn sich das
Worst-Case-Verhalten nicht verbessert.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Was ist mit negativen Zyklen?

Ist von s aus kein negativer Zyklus erreichbar, wird im |V |-ten
Durchgang keine Knotendistanz mehr geupdated.

Gibt es einen negativen Zyklus, führt dies zu einem Zyklus
mit den in edge to gespeicherten Kanten.

In der Praxis testen wir das nach jedem Durchlauf.

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Bellman-Ford-Algorithmus

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 self.in_queue = [False] * graph.no_nodes()

6 self.queue = deque()

7 self.calls_to_relax = 0

8 self.cycle = None

9

10 self.distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and

14 self.queue): # queue not empty

15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Bellman-Ford-Algorithmus (Fortsetzung)

19 def relax(self, graph, v):

20 for edge in graph.adjacent_edges(v):

21 w = edge.to_node()

22 if self.distance[v] + edge.weight() < self.distance[w]:

23 self.edge_to[w] = edge

24 self.distance[w] = self.distance[v] + edge.weight()

25 if not self.in_queue[w]:

26 self.queue.append(w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax % graph.no_nodes() == 0:

30 self.find_negative_cycle()

31

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Bellman-Ford-Algorithmus (Fortsetzung)

32 def has_negative_cycle(self):

33 return self.cycle is not None

34

35 def find_negative_cycle(self):

36 no_nodes = len(self.distance)

37 graph = EdgeWeightedDigraph(no_nodes)

38 for edge in self.edge_to:

39 if edge is not None:

40 graph.add_edge(edge)

41

42 cycle_finder = WeightedDirectedCycle(graph)

43 self.cycle = cycle_finder.get_cycle()

WeightedDirectedCycle detektiert gerichtete Zykel in
gewichteten Graphen.
→ Folge von Tiefensuchen wie in DirectedCycle (C2)

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Zusammenfassung

Dijkstras Algorithmus Azyklische Graphen Bellman-Ford-Algorithmus Zusammenfassung

Zusammenfassung

Nicht-negative Gewichte

Sehr häufiges Problem
Dijkstras Algorithmus mit Laufzeit O(|E | log |V |)

Azyklische Graphen

Kommt in manchen Anwendungen vor und sollte ausgenutzt
werden.
Mit topologischer Sortierung in linearer Zeit O(|E |+ |V |)

Negative Gewichte oder negative Zykel

Gibt es keinen negativen Zyklus findet der
Bellman-Ford-Algorithmus kürzeste Pfade.
Sonst findet er einen negativen Zyklus.

	Dijkstras Algorithmus
	

	Azyklische Graphen
	

	Bellman-Ford-Algorithmus
	

	Zusammenfassung
	

