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Algorithmus Zusammenfassung

Dijkstras Algorithmus: High-Level-Perspektive

Algorithmus von Dijkstra (fiir Kantengewichte)

Baue Kiirzeste-Pfade-Baum ausgehend von Startknoten s auf:

m Betrachte Knoten (die noch nicht im Baum sind) in
aufsteigender Reihenfolge ihres Abstandes von s.

m Nimm Knoten in Baum auf und relaxiere ausgehende Kanten.
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Dijkstras Algorithmus: lllustration
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Datenstrukturen

m edge_to: knotenindiziertes Array, das an Stelle v
die letze Kante des kiirzesten bekannten Pfades enthilt.
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Datenstrukturen

m edge_to: knotenindiziertes Array, das an Stelle v
die letze Kante des kiirzesten bekannten Pfades enthilt.

m distance: knotenindiziertes Array, das an Stelle v die Kosten
des kiirzesten bekannten Pfades vom Startknoten zu v enthalt.
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Datenstrukturen

m edge_to: knotenindiziertes Array, das an Stelle v
die letze Kante des kiirzesten bekannten Pfades enthilt.

m distance: knotenindiziertes Array, das an Stelle v die Kosten
des kiirzesten bekannten Pfades vom Startknoten zu v enthilt.

m pq: indizierte Priority-Queue von Knoten
m Knoten noch nicht im Baum
m Bereits ein Pfad zu dem Knoten bekannt
m Sortiert nach Kosten des kiirzesten bekannten Pfades
zu dem Knoten.
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class DijkstraSSSP:

def

def

__init__(self, graph, start_node):
self.edge_to = [None] * graph.no_nodes()
self .distance = [float('inf')] * graph.no_nodes()
pgq = IndexMinPQQ)
self .distance[start_node] = 0
pq.insert(start_node, 0)
while not pq.empty():
self.relax(graph, pq.del_min(), pq)

relax(self, graph, v, pq):
for edge in graph.adjacent_edges(v):
w = edge.to_node()
if self.distance[v] + edge.weight() < self.distance[w]:
self.edge_to[w] = edge
self .distance[w] = self.distancel[v] + edge.weight()
if pq.contains(w):
pq.change(w, self.distance[w])
else:
pq.insert(w, self.distance[w])
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Korrektheit

Dijkstras Algorithmus I6st das Single-Source-Shortest-Paths-
Problem in Digraphen mit nicht-negativen Gewichten.

Beweis.

m Ist v von Startknoten erreichbar, wird jede ausgehende Kante
e = (v, w) genau einmal relaxiert (wenn v relaxiert wird).

m Dann gilt distance[w] < distance[v] 4+ weight(e).
m Ungleichung bleibt erfiillt:
m distance[v] wird nicht mehr verandert, da Wert minimal war
und es keine negativen Kantengewichte gibt.
m distance[w] wird hdchstens kleiner.
m Sind alle erreichbaren Knoten relaxiert, ist
Optimalitatsbedingung erfiillt.
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Algorithmus Zusammenfassung

Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr dhnlich zu Eager Prim-Algorithmus fiir
minimale Spannbdume

m Beide bauen sukzessive einen Baum auf

m nichster Knoten Prim: minimale Distanz zu bisherigem Baum.
m nichster Knoten Dijkstra: minimale Distanz vom Startknoten.
[

included nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.
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Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr dhnlich zu Eager Prim-Algorithmus fiir
minimale Spannbdume

m Beide bauen sukzessive einen Baum auf

m nichster Knoten Prim: minimale Distanz zu bisherigem Baum.
m nichster Knoten Dijkstra: minimale Distanz vom Startknoten.
[

included nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.

Laufzeit O(|E|log|V/|) und Platzbedarf O(|V|) direkt tibertragbar.
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Zykelfreiheit ausnutzen

Gegeben: Azyklischer, gewichteter Digraph

Konnen wir die Zykelfreiheit beim Finden kiirzester Pfade nutzen?
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Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
zB.0,1,3,425,7,6
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Theorem

Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem fiir kantengewichtete,
azyklische Digraphen in Zeit O(|E| + |V|) gel6st.
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Theorem

Theorem

Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem fiir kantengewichtete,
azyklische Digraphen in Zeit O(|E| + |V|) gel6st.

v
Beweis.

m Jede Kante e = (v, w) wird genau einmal relaxiert. Direkt
danach gilt distance[w] < distance[v] + weight(e).
m Ungleichung gilt bis zur Terminierung

m distance[w] wird nie grosser.

m distance[v] wird nicht mehr verdndert, da
alle eingehenden Kanten aufgrund der
topologischen Sortierung bereits relaxiert wurden.

— Optimalitatskriterium ist bei Terminierung erfiillt. Ol
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Verwandte Probleme: Langste Pfade

Definition (Langste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?
Falls ja, finde den Pfad mit maximalem Gewicht.
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Verwandte Probleme: Langste Pfade

Definition (Langste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?
Falls ja, finde den Pfad mit maximalem Gewicht.

Multipliziere alle Kantengewichte mit —1 und verwende
Kiirzeste-Pfade-Algorithmus.
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Verwandte Probleme: Kritischer Pfad

Gegeben:
m Menge von Aufgaben a, jede bendtigt gegebene Zeit t,

m Bedingungen a — 4/, dass a fertiggestellt sein muss, bevor &’
begonnen werden kann (in I6sbaren Problemen zykelfrei).
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Verwandte Probleme: Kritischer Pfad

Gegeben:
m Menge von Aufgaben a, jede bendtigt gegebene Zeit t,

m Bedingungen a — 4/, dass a fertiggestellt sein muss, bevor &’
begonnen werden kann (in I6sbaren Problemen zykelfrei).

Frage:
m Annahme: Beliebig viele Aufgaben parallel ausfiihrbar

m Wie lange bendtigen Sie fiir die Erledigung aller Aufgaben?
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Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen
m Knoten s, e + fiir jede Aufgabe a zwei Knoten a5 und a.

m fir alle a:

m Kante (s, as) mit Gewicht 0
m Kante (a, ) mit Gewicht 0
m Kante (a5, 3.) mit Gewicht t,

m fiir jede Bedingung a — &’ Kante (ae, a.) mit Gewicht 0



rorithmus Azyklische Graphen 3 Algorithmus Zusammenfass
0000000@ o 0o

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen
m Knoten s, e + fiir jede Aufgabe a zwei Knoten a5 und a.

m fir alle a:

m Kante (s, as) mit Gewicht 0
m Kante (a, ) mit Gewicht 0
m Kante (a5, a.) mit Gewicht ¢,

m fiir jede Bedingung a — &’ Kante (ae, a.) mit Gewicht 0

Kritischer Pfad fiir Aufgabe a ist langster Pfad von s zu as.
Waihle Startzeit fiir a als Gewicht eines kritischen Pfades.
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Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen

m Knoten s, e + fiir jede Aufgabe a zwei Knoten a5 und a.
m fiir alle a:

m Kante (s, as) mit Gewicht 0
m Kante (a, ) mit Gewicht 0
m Kante (a5, a.) mit Gewicht ¢,

m fiir jede Bedingung a — &’ Kante (ae, a.) mit Gewicht 0

Kritischer Pfad fiir Aufgabe a ist langster Pfad von s zu as.
Wihle Startzeit fiir a als Gewicht eines kritischen Pfades.
— Ergibt optimale Gesamtausfiihrungszeit

(= Gewicht von langstem Pfad von s zu e)

rorithmus Azyklische Graphen 3 Algorithmus Zusammenfass
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Problem

m Bei negativen Kantengewichten kann es negative Zyklen
geben, d.h. Zyklen, bei denen die Summe der Kantengewichte
negativ ist.

m Liegt ein Knoten eines solchen Zyklus auf einem Pfad von s
nach v, kdnnen wir Pfade finden, deren Gewicht niedriger als
jeder gegebene Wert ist.

— kein korrekt gestelltes Problem

m Alternative Fragestellung: Finde kiirzesten einfachen Pfad?

— NP-schweres (= sehr schwieriges) Problem
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Fragestellung

In vielen praktischen Anwendungen sind negative Zyklen ein
Hinweis auf einen Modellierungsfehler.

Neue Fragestellung

Gegeben: Gewichteter Digraph, Startknoten s

Gefragt: Ist von s aus ein negativer Zyklus erreichbar?
Falls nein, berechne den Kiirzeste-Pfade-Baum
zu allen erreichbaren Knoten.
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Ssung
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Bellman-Ford- Algorlthmus High-Level-Perspektive

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus

m Initialisiere distance[s] = O fiir Startknoten s,
distance[n] = oo fiir alle anderen Knoten.

m Dann |V| Durchliufe, in denen
jeweils alle Kanten relaxiert werden.
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Bellman-Ford- Algorlthmus High-Level- Perspektlve

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus

m Initialisiere distance[s] = O fiir Startknoten s,
distance[n] = oo fiir alle anderen Knoten.

m Dann |V| Durchliufe, in denen
jeweils alle Kanten relaxiert werden.

| A

Proposition

Das Verfahren lost das Single-Source-Shortest-Paths-Problem fiir
Graphen ohne negative Zyklen in Zeit O(|E||V|) und mit
zusatzlichem Speicher O(|V|).

<

Beweisidee: Nach j Durchgéngen ist jeder Pfad zu v mindestens so
kurz wie jeder Pfad zu v mit hochstens i Kanten.
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Effizientere Variante

m Andert sich distance[v] in Durchgang i nicht, dndert auch
keine Relaxierung einer von v ausgehenden Kante in
Durchgang i + 1 etwas.

m |dee: Merke dir Knoten mit verdnderter distance in Queue.

m In der Praxis deutlich schneller, auch wenn sich das
Worst-Case-Verhalten nicht verbessert.
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Was ist mit negativen Zyklen?

m Ist von s aus kein negativer Zyklus erreichbar, wird im |V/|-ten
Durchgang keine Knotendistanz mehr geupdated.

m Gibt es einen negativen Zyklus, fiihrt dies zu einem Zyklus
mit den in edge_to gespeicherten Kanten.

m In der Praxis testen wir das nach jedem Durchlauf.
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Bellman-Ford-Algorithmus

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self .distance = [float('inf')] * graph.no_nodes()
5 self.in_queue = [False] * graph.no_nodes()

6 self .queue = deque()

7 self.calls_to_relax = 0

8 self.cycle = None

9

10 self.distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and
14 self.queue): # queue not empty
15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18
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Bellman-Ford-Algorithmus (Fortsetzung)

19 def relax(self, graph, v):

20 for edge in graph.adjacent_edges(v):

21 w = edge.to_node()

22 if self.distancel[v] + edge.weight() < self.distancel[w]:
23 self .edge_to[w] = edge

24 self .distance[w] = self.distance[v] + edge.weight()
25 if not self.in_queue[w]:

26 self .queue.append (w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax 7}, graph.no_nodes() == 0:

30 self.find_negative_cycle()
31
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Bellman-Ford-Algorithmus
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Bellman-Ford-Algorithmus (Fortsetzung)

has_negative_cycle(self):
return self.cycle is not None

find_negative_cycle(self):
no_nodes = len(self.distance)
graph = EdgeWeightedDigraph(no_nodes)
for edge in self.edge_to:
if edge is not None:
graph.add_edge (edge)

cycle_finder = WeightedDirectedCycle(graph)
self.cycle = cycle_finder.get_cycle()

WeightedDirectedCycle detektiert gerichtete Zykel in
gewichteten Graphen.
— Folge von Tiefensuchen wie in DirectedCycle (C2)
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Zusammenfassung

m Nicht-negative Gewichte

m Sehr hdufiges Problem

m Dijkstras Algorithmus mit Laufzeit O(|E|log|V/])
m Azyklische Graphen

® Kommt in manchen Anwendungen vor und sollte ausgenutzt
werden.
m Mit topologischer Sortierung in linearer Zeit O(|E| + |V])

m Negative Gewichte oder negative Zykel

m Gibt es keinen negativen Zyklus findet der
Bellman-Ford-Algorithmus kiirzeste Pfade.
m Sonst findet er einen negativen Zyklus.
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