Algorithmen und Datenstrukturen
A8. Sortieren IV

Marcel Liithi and Gabriele Roger

Universitat Basel

13. Mérz 2020

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

13. Marz 2020

1/

Algorithmen und Datenstrukturen
13. Marz 2020 — A8. Sortieren IV

A8.1 Uberblick

A8.2 Ausblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 13. Marz 2020 2 /13

Sortierverfahren

| Vergleichsbasierte
Verfahren

Nicht

_ vergleichsbasierte

Verfahren

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020 3 /13

A8. Sortieren IV Uberblick

A8.1 Uberblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 13. Marz 2020 4 /13

A8. Sortieren IV Uberblick

Vergleichsbasierte Verfahren: Ubersicht

Algorithmus Laufzeit O(-) Speicherbedarf O(:) stabil
best/avg./worst best/avg./worst

Selectionsort ~ n? 1 nein

Insertionsort ~ n/n?/n? 1 ja

Mergesort nlogn n ja

Quicksort nlogn/nlogn/n?> logn/logn/n nein

Heapsort nlogn 1 nein

Sehr schone Visualisierung der Verfahren unter
https://www.toptal.com/developers/sorting-algorithms/

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020 5/13

https://www.toptal.com/developers/sorting-algorithms/

A8. Sortieren IV

Uberblick

Vergleichsbasierte Verfahren: Bemerkungen

>

Insertionsort ist auf kleinen Sequenzen sehr schnell und wird
daher zum Beispiel zur Verbesserung von Mergesort und
Quicksort fiir kurze Aufrufe eingesetzt.

Quicksort hat eine sehr kurze (= schnelle) innere Schleife. Mit
Randomisierung tritt schlechtester Fall so gut wie nie auf.

Mergesort ist dafiir stabil. Zudem ist der Mergeschritt auch
fiir externes Sortieren relevant (dazu gleich noch mehr).
Wird z.B. gerne bei Datenbankanwendungen eingesetzt.

Heapsort ist in der Praxis etwas langsamer als Mergesort,
als in-place-Verfahren aber dennoch interessant
z.B. fiir eingebettete Systeme.

Gleiche asymptotische Laufzeit bedeutet nicht, dass Verfahren
auch gleich lange brauchen (verschiedene Konstanten in O(+)).
Heapsort braucht doppelt so viele Vergleiche wie Mergesort.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020

6/

A8. Sortieren IV Ausblick

A8.2 Ausblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 13. Marz 2020 7 /13

A8. Sortieren IV Ausblick

Vorsortierte Daten

» Oftmals sind Teilsequenzen der Eingabe bereits vorsortiert.
> Insertionsort profitiert davon direkt.

» Von manchen Verfahren gibt es Varianten,
die Vorsortierung ausnutzen
z.B. natiirliches 2-Wege-Mergesort.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020 8 /13

A8. Sortieren IV Ausblick

Viele gleiche Schliissel

» Tritt in praktischen Anwendungen haufig auf
z.B. Sortieren von Studierendendaten nach Geschlecht

» Von manchen Algorithmen gibt es spezialisierte Varianten
» Zum Beispiel 3-Wege-Partitionierung in Quicksort

<P =P > P

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020 9 /13

A8. Sortieren IV Ausblick

Sortieren komplexer Objekte

» Meist will man nicht nur Zahlen,
sondern komplexe Objekte sortieren.

» Hier wire es sehr teuer, bei jeder Vertauschung
die ganzen Objekte zu kopieren.

» Stattdessen: Sortiere Elemente, die nur aus Schliissel und
Zeiger/Referenz auf das tatsdchliche Objekt bestehen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020 10

/ 13

A8. Sortieren IV Ausblick

Externes Sortieren

> Sehr grosse Datensdtze passen nicht in den internen Speicher.
» Annahme: interner Speicher hat Grosse m

> Lese jeweils Bereich der Grosse m ein, sortiere ihn und
schreibe ihn zuriick auf den externen Speicher.
» Dann sukzessives Mergen dhnlich zu Mergesort. Konzeptuell:
> lese jeweils Bereich der Grosse m/3 der beiden vorsortierten
Bereiche ein
> es bleiben m/3 fiir Ausgabe
> falls ein Eingabebereich erschopft ist — nachladen
» falls Ausgabebereich voll — rausschreiben

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020 11

13

A8. Sortieren IV

Weniger korrekte Verfahren

INEFFECTIVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LisT): DEFINE FRETBOGOSORT(LIST):

IF LENGH(LIST) < 2: // AN OPTIZED BOGOSORT

RETURN LST /f RUNS IN O(N LoGN)

PIVOT = INT (LENGTH(LIST) / 2) FOR N FROM 1 TO LOG(LENGTA(LIST)):

A = HALFHEARTEDIMERGE SORT (LISTL P:vuﬂ% SHUFFLE(LIST):

B = HALFHEARTEDMERGE SORT (LiST[PvOT:] IF 1550RTED (LIST):

A UMMM REORN LisT

RETURN[A, B] // HERE. SORRY. RETURN “KERNEL PRGE FRULT (ERROR CODE: 2)*
DEFNE JOBIMERMES QUICKSORT (LIST): | DEFINE PANICSORT(LiST):

0K 50 YDU CHOOSE. A PVOT " GSORTED (LIST)

e e

vollstandiger Comic unter https://xkcd.com/1185/
(CC BY-NC 2.5)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020

Ausblick

12

13

https://xkcd.com/1185/

A8. Sortieren IV

Andere Probleme durch Sortieren |osen

k-kleinstes Element
» zum Beispiel Finden des Medians (k = |n/2])

» Verwende Quicksort, aber mache rekursiven Aufruf
nur fiir den relevanten Bereich.

Duplikate

> Wie viele verschiedene Schliissel gibt es? Welcher Wert ist
am h&ufigsten? Gibt es doppelte Schliissel?

» Kann man direkt mit quadratischen Algorithmen beantworten.

» Oder — schlauer — erst sortieren und
dann mit einem Durchlauf I6sen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13. Marz 2020

13

Ausblick

13

	Überblick
	

	Ausblick
	

