Algorithmen und Datenstrukturen
AT. Sortieren Il

Marcel Lithi and Gabriele Roger

Universitat Basel

11. Marz 2020

Untere Schranke

00000000

Untere Schranke

Untere Schranke
0@000000

Sortierverfahren

—| Insertionsort |
—{ Mergesort |
Nicht
vergleichsbasierte
Verfahren
—| Quick Sort |

- —{ Heap Sort |
Uberblick und
Ausblick

Untere Schranke Q ol sierte Verfahren Zusammenfassung
00®00000 © ofo

Untere Schranke |

m Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

m Geht es noch besser?

m Wir zeigen: Nicht mit vergleichsbasierten Verfahren!

Untere Schranke Q SOl sbasierte Verfahren Zusammenfassung

[e]e]e] le]elele)

Untere Schranke Il

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
m Verhalten hdngt nur vom Ergebnis der Schliisselvergleiche ab.

m Bei jedem Schliisselvergleich gibt es zwei M&glichkeiten,
wie der Algorithmus weiter macht.

m Wir konnen das graphisch als Baum darstellen.

Untere Schranke Q eapsol sierte Verfahren Zusammenfas:
00008000 @) 00

Untere Schranke 1l

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Untere Schranke Q ol sierte Verfahren Zusammenfas:
[e]e]eYo! Yelele] © 0o o) 00

Untere Schranke 1l

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binarbaum
mit k Blattern ist mindestens log, k.

Untere Schranke
00000800

Untere Schranke IV

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich

m Muss alle Eingaben der Grdsse n korrekt sortieren.

Untere Schranke Q e ! \ basierte Verfahren Zusammenfa

00000e00

Untere Schranke IV

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.

Beispiel: posO — pos2, posl — posl, pos2 — pos0

Untere Schranke Q e ! asierte Verfahren Zusammenfa

00000e00

Untere Schranke IV

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO — pos2, posl — posl, pos2 — pos0

m Da alle moglichen Eingaben der Grosse n korrekt geldsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen kdnnen.

Untere Schranke
00000080

Untere Schranke V

sbasierte Verfahren Zusammenfa

m Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

m Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

m Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

m Es gibt also eine Eingabe der Grosse n mit
> log,(n!) Schliisselvergleichen.

Untere Schranke
0000000@

Untere Schranke VI

Abschéatzung von log,(n!)
m Es gilt n! > (g)%

41=1-2-3 .4 >22
>2 >2

Untere Schranke

0000000

Untere Schranke VI

Abschéatzung von log,(n!)
m Es gilt n! > (g)g
41=1-2-3 .4 >22
>2

m log,(n!)

>

>2

loga((2)3) = 1

(Iog2 n+ Iog %
S(logyn —1)

g(%)
):

5(logy n — log; 2)

Untere Schranke

0000000

Untere Schranke VI

Abschéatzung von log,(n!)
m Es gilt n! > (g)g
41=1-2-3 .4 >2°
>2 >2
= logy(n!) > loga((5)2) = 5 loga(3)
= (Iogzn+log 3)=3
S(logyn —1)

Z(logy n — log, 2)

Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.

Quicksort
©00000000

Quicksort

Quicksort
0@0000000

Sortierverfahren

—| Insertionsort |
—{ Mergesort |

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

- —{ Heap Sort |
Uberblick und
Ausblick

Quicksort ! sbasierte Verfahren Zusammenfassung
[e]e] lelelelelele) O [e]e)

Quicksort: Idee

Wie Merge-Sort ein Divide-and-Conquer-Verfahren

m Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

m Hierfiir wird ein Element P gewahlt
(das sogenannte Pivotelement).
m Dann wird so umsortiert, dass P an die endgiiltige Position

kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

m Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

Quicksort ort asierte Verfahren

000e00000

Quicksort: Algorithmus
1 def sort(array):
2 sort_aux(array, 0, len(array)-1)
3
4 def sort_aux(array, lo, hi):
5 if hi <= lo:
6 return
7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)
9 sort_aux(array, lo, pivot_pos - 1)
10 sort_aux(array, pivot_pos + 1, hi)

anke Quicksort te] sierte Verfahren

Zusammenfassung
0O000@0000

Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kdnnen zum Bsp. folgende Strategien wahlen:
m Naiv: Nimm immer erstes Element

m Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

m Randomisiert: Wahle zuféllig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

Quicksort
00000@000

Wie macht man die Umsortierung?

array

lo hi
o @ T Pivot ist an Pos 0.
i j Initialisiere i = lo + 1, = hi
- [s[Tal2 3]s -

Quicksort
00000@000

Wie macht man die Umsortierung?

array

lo hi
o @ T Pivot ist an Pos 0.

Initialisiere i = lo 4 1, = hi

i J
T @ T i nach rechts bis zu Element > Pivot,
i J J nach links bis Element < Pivot
NEnnnaok

Quicksort ort [sbasierte Verfahren Zusammenfassung

0O0000e000

Wie macht man die Umsortlerung7

array

.ﬂﬁﬂ.@ s Pivot ist an Pos 0.
Initialisiere i = lo 4 1, = hi
..EE.@ e i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

IIEEIEM

- BTl

Falls i < j: Elemente tauschen, i++, j——

Quicksort sierte Verfahren Zusammenfa

0O0000e000

Wie macht man die Umsortlerung7

array

.ﬂﬁﬂ.@ T Pivot ist an Pos 0.
Initialisiere i = lo 4 1, = hi
.ﬂn!.@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot
..EE.@ Falls i < j: Elemente tauschen, i++, j——
..E..@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

- BIlal2]e)

Quicksort e ! asierte Verfahren Zusammenfa

0O0000e000

Wie macht man die Umsortlerung7

array

@ T Pivot ist an Pos 0.
Initialisiere i = lo 4 1, = hi

@ s i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ o Falls i < j: Elemente tauschen, i++, j——
@ s i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ i > j: noch Pivot an Pos j tauschen
@ cee Fertig!

Quicksort
000000800

Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i=10 + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i+=1

8 while array[j] > pivot:

9 j-—=1

10 if 1 >= j:

11 break

12

13 array[i], array[j] = arrayl[jl, arrayl[i]
14 i, j=4i+1,3j-1

15 array[lo], array[j]l = array[j], array[lo]

16 return j

anke Quicksort 0 sierte Verfahren Zusammenfas:
000000080

Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
m O(log, n) rekursive Aufrufe
m jeweils hi-lo Schliisselvergleiche in Partitionierung

m auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)

Quicksort SOl sbasierte Verfahren Zusammenfassung
000000080 O [e]e)

Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
m O(log, n) rekursive Aufrufe
m jeweils hi-lo Schliisselvergleiche in Partitionierung

m auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)

Worst case: Pivot-Element immer kleinstes oder grosstes Element
m insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Linge
nn—1...,2.
m jeweils hi-lo Schliisselvergleiche in Partitionierung

— 0O(n?)

anke Quicksort 0 sierte Verfahren Zusammenfas:
00000000e

Quicksort: Laufzeit Il

Average case:

m Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

m O(log n) rekursive Aufrufe
m insgesamt O(nlog n)
m etwa 39% langsamer als best case

anke Quicksort ort [sbasierte Verfahren Zusammenfassung
00000000e 00

Quicksort: Laufzeit Il

Average case:

m Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

m O(log n) rekursive Aufrufe
m insgesamt O(nlog n)
m etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.

Heapsort

Heapsort
o] Yo}

Sortierverfahren

—| Insertionsort |
—{ Mergesort |

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

—| Quick Sort |
i o [HeapSort |

Ausblick

Heapsort sbasierte Verfahren Zusammenfassung

ooe

Heapsort

m Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

m Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

m Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

m Die Laufzeit von Heapsort ist leicht iiberlinear.

m Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.

Nicht vergleichsbasierte Verfahren

0000000000

Nicht vergleichsbasierte Verfahren

Nicht vergleichsbasierte Verfahren
0e00000000

Sortierverfahren

Vergleichsbasierte
Verfahren

Radixsort

Uberblick und
Ausblick

Nicht vergleichsbasierte Verfahren Zusammenfa

00®0000000

Countingsort: Idee

»Sortieren durch Zahlen*
m Annahme: Elemente sind aus Bereich 0, ..., k — 1.

m Laufe einmal iiber die Eingabesequenz und zihle dabei,
wie oft jedes Element vorkommt.

m Sei #/ die Anzahl der Vorkommen von Element i.

m lteriere i=0,...,k—1 und
schreibe jeweils #i-mal Element / in die Sequenz.

Nicht vergleichsbasierte Verfahren
[e]e]e] lelelelele]e]

Countingsort: Algorithmus

def sort(array, k):
counts = [0] * k # list of k zeros
for elem in array:
counts[elem] += 1

pos = 0
for i in range(k):
occurrences_of_i = counts[i]
for j in range(occurrences_of_i):
10 array[pos + jl =1
11 pos += occurrences_of_i

1
2
3
4
5
6
7
8
9

Nicht vergleichsbasierte Verfahren
000@000000

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)

Nicht vergleichsbasierte Verfahren
000@000000

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear

Nicht vergleichsbasierte Verfahren
[e]e]e]e] Telelele]e]

Sortierverfahren

Vergleichsbasierte
Verfahren

Countingsort

Uberblick und
Ausblick

Nicht vergleichsbasierte Verfahren
[e]e]e]e]e] le]elele)

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Untere Schra Nicht vergleichsbasierte Verfahren Zusammenfassung

[e]e]e]e]e] le]elele)

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

000000000 felele} 0000080000

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

m Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Nicht vergleichsbasierte Verfahren Zusammenf.

Nicht vergleichsbasierte Verfahren Zusammenf.
00000e0000

Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.

Nicht vergleichsbasierte Verfahren
0000008000

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286

Nicht vergleichsbasierte Verfahren
0000008000

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

eapso Nicht vergleichsbasierte Verfahren
000 0000000000

Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 983 96
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96

Zusammenf.

Radixsort: Beispiel
m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286
m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8
462 983
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
m Aufteilung nach drittletzter Stelle:

0 1 2 3 4 5 6 7 8
096 263 462
286

Aufsammeln ergibt: 96, 263, 286, 462, 983

Untere anke eapsol Nicht vergleichsbasierte Verfahren

9
96

983

Nicht vergleichsbasierte Verfahren
0000000e00

Jupyter-Notebook

@
_
Jupyter
o

Jupyter-Notebook: radix_sort.ipynb

Nicht vergleichsbasierte Verfahren
0000000080

Radixsort: Algorithmus (fiir beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element
6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) 7, base
10 buckets[digit] .append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1

anke @ ort Nicht vergleichsbasierte Verfahren Zusammenfassung

000000000 e

Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))

anke @ ort Nicht vergleichsbasierte Verfahren Zusammenfassung

000000000 e

Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))

Fir festes m und b hat Radixsort lineare Laufzeit.

Zusammenfassung

sierte Verfahren Zusammenfassung

oe

Zusammenfassung

m Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht iiberlineare Laufzeit.

m Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

m Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

m Sie machen jedoch zusatzliche Einschréankungen
an die verwendeten Schliissel.

	Untere Schranke
	

	Quicksort
	

	Heapsort
	

	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	

