
Algorithmen und Datenstrukturen
A7. Sortieren III

Marcel Lüthi and Gabriele Röger

Universität Basel

11. März 2020

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke I

Mergesort hatte bisher mit O(n log2 n) die beste
(Worstcase-)Laufzeit.

Geht es noch besser?

Wir zeigen: Nicht mit vergleichsbasierten Verfahren!

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke II

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.

Verhalten hängt nur vom Ergebnis der Schlüsselvergleiche ab.

Bei jedem Schlüsselvergleich gibt es zwei Möglichkeiten,
wie der Algorithmus weiter macht.

Wir können das graphisch als Baum darstellen.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke III

Binärbaum: jeder Knoten hat höchstens zwei Nachfolger

Knoten ohne Nachfolger heissen Blätter (Bild: eckige Knoten).

Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binärbaum
mit k Blättern ist mindestens log2 k .

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke III

Binärbaum: jeder Knoten hat höchstens zwei Nachfolger

Knoten ohne Nachfolger heissen Blätter (Bild: eckige Knoten).

Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binärbaum
mit k Blättern ist mindestens log2 k .

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke IV

Was muss der Algorithmus können?

Annahme: alle Elemente unterschiedlich

Muss alle Eingaben der Grösse n korrekt sortieren.

Wir können alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden müssen.

Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: pos0 7→ pos2, pos1 7→ pos1, pos2 7→ pos0

Da alle möglichen Eingaben der Grösse n korrekt gelösst
werden müssen, muss der Algorithmus alle n! möglichen
Permutationen erzeugen können.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke IV

Was muss der Algorithmus können?

Annahme: alle Elemente unterschiedlich

Muss alle Eingaben der Grösse n korrekt sortieren.

Wir können alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden müssen.

Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: pos0 7→ pos2, pos1 7→ pos1, pos2 7→ pos0

Da alle möglichen Eingaben der Grösse n korrekt gelösst
werden müssen, muss der Algorithmus alle n! möglichen
Permutationen erzeugen können.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke IV

Was muss der Algorithmus können?

Annahme: alle Elemente unterschiedlich

Muss alle Eingaben der Grösse n korrekt sortieren.

Wir können alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden müssen.

Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: pos0 7→ pos2, pos1 7→ pos1, pos2 7→ pos0

Da alle möglichen Eingaben der Grösse n korrekt gelösst
werden müssen, muss der Algorithmus alle n! möglichen
Permutationen erzeugen können.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke V

Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

Bei Eingabegrösse n muss der Baum also
mindestens n! Blätter haben.

Die maximale Tiefe des entsprechenden Baumes
ist demnach ≥ log2(n!).

Es gibt also eine Eingabe der Grösse n mit
≥ log2(n!) Schlüsselvergleichen.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke VI

Abschätzung von log2(n!)

Es gilt n! ≥ (n2)
n
2

4! = 1 · 2 · 3
≥2
· 4
≥2
≥ 22

log2(n!) ≥ log2((n2)
n
2) = n

2 log2(n2)
log2(n!) = n

2 (log2 n + log2
1
2) = n

2 (log2 n − log2 2)
log2(n!) = n

2 (log2 n − 1)

Theorem

Jeder vergleichsbasierte Sortieralgorithmus benötigt Ω(n log n) viele
Schlüsselvergleiche. Damit liegt auch die Laufzeit in Ω(n log n).

Mergesort ist asymptotisch optimal.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke VI

Abschätzung von log2(n!)

Es gilt n! ≥ (n2)
n
2

4! = 1 · 2 · 3
≥2
· 4
≥2
≥ 22

log2(n!) ≥ log2((n2)
n
2) = n

2 log2(n2)
log2(n!) = n

2 (log2 n + log2
1
2) = n

2 (log2 n − log2 2)
log2(n!) = n

2 (log2 n − 1)

Theorem

Jeder vergleichsbasierte Sortieralgorithmus benötigt Ω(n log n) viele
Schlüsselvergleiche. Damit liegt auch die Laufzeit in Ω(n log n).

Mergesort ist asymptotisch optimal.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Untere Schranke VI

Abschätzung von log2(n!)

Es gilt n! ≥ (n2)
n
2

4! = 1 · 2 · 3
≥2
· 4
≥2
≥ 22

log2(n!) ≥ log2((n2)
n
2) = n

2 log2(n2)
log2(n!) = n

2 (log2 n + log2
1
2) = n

2 (log2 n − log2 2)
log2(n!) = n

2 (log2 n − 1)

Theorem

Jeder vergleichsbasierte Sortieralgorithmus benötigt Ω(n log n) viele
Schlüsselvergleiche. Damit liegt auch die Laufzeit in Ω(n log n).

Mergesort ist asymptotisch optimal.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Idee

Wie Merge-Sort ein Divide-and-Conquer-Verfahren

Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

Hierfür wird ein Element P gewählt
(das sogenannte Pivotelement).

Dann wird so umsortiert, dass P an die endgültige Position
kommt, vor P nur Elemente ≤ P stehen, und hinten nur
Elemente ≥ P.

P≤ P ≥ P

Macht man das rekursiv für den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Wie wählt man das Pivot-Element?

Für die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir können zum Bsp. folgende Strategien wählen:

Naiv: Nimm immer erstes Element

Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

Randomisiert: Wähle zufällig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 Fertig!

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 Fertig!

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 Fertig!

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 Fertig!

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 Fertig!

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Laufzeit I

Best case: Pivot-Element teilt in gleich grosse Bereiche

O(log2 n) rekursive Aufrufe

jeweils hi-lo Schlüsselvergleiche in Partitionierung

auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

→ O(n log n)

Worst case: Pivot-Element immer kleinstes oder grösstes Element

insgesamt n-1 (nichttriviale) rekursive Aufrufe für Länge
n, n − 1, . . . , 2.

jeweils hi-lo Schlüsselvergleiche in Partitionierung

→ Θ(n2)

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Laufzeit I

Best case: Pivot-Element teilt in gleich grosse Bereiche

O(log2 n) rekursive Aufrufe

jeweils hi-lo Schlüsselvergleiche in Partitionierung

auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

→ O(n log n)

Worst case: Pivot-Element immer kleinstes oder grösstes Element

insgesamt n-1 (nichttriviale) rekursive Aufrufe für Länge
n, n − 1, . . . , 2.

jeweils hi-lo Schlüsselvergleiche in Partitionierung

→ Θ(n2)

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Laufzeit II

Average case:

Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufällig gewählt

O(log n) rekursive Aufrufe

insgesamt O(n log n)

etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(n log n)-Verfahren betrachtet.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Quicksort: Laufzeit II

Average case:

Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufällig gewählt

O(log n) rekursive Aufrufe

insgesamt O(n log n)

etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(n log n)-Verfahren betrachtet.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Heapsort

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Heapsort

Heap: Datenstruktur, die das Finden und Entnehmen des
grössten Elements besonders effizient unterstützt
Finden: Θ(1), Entnehmen: Θ(log n)

Grundidee analog zu Selectionsort: Setze sukzessive das
grösste Element an das Ende des unsortierten Bereichs.

Kann den Heap direkt in der Eingabesequenz repräsentieren,
so dass Heapsort nur konstanten zusätzlichen Speicherplatz
benötigt.

Die Laufzeit von Heapsort ist leicht überlinear.

Wir besprechen die Details später, wenn wir Heaps
genauer kennengelernt haben.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Nicht vergleichsbasierte Verfahren

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Countingsort

Radixsort

Überblick und
Ausblick

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Idee

”
Sortieren durch Zählen“

Annahme: Elemente sind aus Bereich 0, . . . , k − 1.

Laufe einmal über die Eingabesequenz und zähle dabei,
wie oft jedes Element vorkommt.

Sei #i die Anzahl der Vorkommen von Element i .

Iteriere i = 0, . . . , k − 1 und
schreibe jeweils #i-mal Element i in die Sequenz.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Countingsort

Radixsort

Überblick und
Ausblick

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Idee

”
Sortieren durch Fachverteilen“

Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Beispiel

Eingabe: 263, 983, 96, 462, 286

Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: radix sort.ipynb

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Algorithmus (für beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element

6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) % base

10 buckets[digit].append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Laufzeit

m: Maximale Anzahl Stellen in Repräsentation
mit gegebener Basis b.

n: Länge der Eingabesequenz

Laufzeit in O(m · (n + b))

Für festes m und b hat Radixsort lineare Laufzeit.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Radixsort: Laufzeit

m: Maximale Anzahl Stellen in Repräsentation
mit gegebener Basis b.

n: Länge der Eingabesequenz

Laufzeit in O(m · (n + b))

Für festes m und b hat Radixsort lineare Laufzeit.

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Zusammenfassung

Untere Schranke Quicksort Heapsort Nicht vergleichsbasierte Verfahren Zusammenfassung

Zusammenfassung

Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht überlineare Laufzeit.

Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

Sie machen jedoch zusätzliche Einschränkungen
an die verwendeten Schlüssel.

	Untere Schranke
	

	Quicksort
	

	Heapsort
	

	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	

