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Untere Schranke |

m Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

m Geht es noch besser?

m Wir zeigen: Nicht mit vergleichsbasierten Verfahren!
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Untere Schranke Il

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
m Verhalten hdngt nur vom Ergebnis der Schliisselvergleiche ab.

m Bei jedem Schliisselvergleich gibt es zwei M&glichkeiten,
wie der Algorithmus weiter macht.

m Wir konnen das graphisch als Baum darstellen.
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Untere Schranke 1l

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.
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Untere Schranke 1l

Bindrbaum: jeder Knoten hat hochstens zwei Nachfolger
Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
Der Knoten ganz oben ist die Wurzel.

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binarbaum
mit k Blattern ist mindestens log, k.
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Untere Schranke IV

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich

m Muss alle Eingaben der Grdsse n korrekt sortieren.
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Untere Schranke IV

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.

Beispiel: posO — pos2, posl — posl, pos2 — pos0
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Untere Schranke IV

Was muss der Algorithmus kdnnen?
m Annahme: alle Elemente unterschiedlich
m Muss alle Eingaben der Grosse n korrekt sortieren.

m Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

m Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO — pos2, posl — posl, pos2 — pos0

m Da alle moglichen Eingaben der Grosse n korrekt geldsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen kdnnen.
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Untere Schranke V
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m Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

m Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

m Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

m Es gibt also eine Eingabe der Grosse n mit
> log,(n!) Schliisselvergleichen.
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Untere Schranke VI

Abschéatzung von log,(n!)
m Es gilt n! > (g)%

41=1-2-3 .4 >22
>2 >2
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Untere Schranke VI

Abschéatzung von log,(n!)
m Es gilt n! > (g)g
41=1-2-3 .4 >22
>2

m log,(n!)

>

>2

loga((2)3) = 1

(Iog2 n+ Iog %
S(logyn —1)

g(%)
):

5(logy n — log; 2)
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Untere Schranke VI

Abschéatzung von log,(n!)
m Es gilt n! > (g)g
41=1-2-3 .4 >2°
>2 >2
= logy(n!) > loga((5)2) = 5 loga(3)
= (Iogzn+log 3)=3
S(logyn —1)

Z(logy n — log, 2)

Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.
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Quicksort: Idee

Wie Merge-Sort ein Divide-and-Conquer-Verfahren

m Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

m Hierfiir wird ein Element P gewahlt
(das sogenannte Pivotelement).
m Dann wird so umsortiert, dass P an die endgiiltige Position

kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

m Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.
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Quicksort: Algorithmus
1 def sort(array):
2 sort_aux(array, 0, len(array)-1)
3
4 def sort_aux(array, lo, hi):
5 if hi <= lo:
6 return
7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)
9 sort_aux(array, lo, pivot_pos - 1)
10 sort_aux(array, pivot_pos + 1, hi)




anke Quicksort te] sierte Verfahren

Zusammenfassung
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Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kdnnen zum Bsp. folgende Strategien wahlen:
m Naiv: Nimm immer erstes Element

m Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

m Randomisiert: Wahle zuféllig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.
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Wie macht man die Umsortierung?

array

lo hi
o @ T Pivot ist an Pos 0.
i j Initialisiere i = lo + 1, = hi
- [s[Tal2 3]s -
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Wie macht man die Umsortierung?

array

lo hi
o @ T Pivot ist an Pos 0.

Initialisiere i = lo 4 1, = hi

i J
T @ T i nach rechts bis zu Element > Pivot,
i J J nach links bis Element < Pivot
NEnnnaok
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Wie macht man die Umsortlerung7

array

.ﬂﬁﬂ.@ s Pivot ist an Pos 0.
Initialisiere i = lo 4 1, = hi
..EE.@ e i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

IIEEIEM

- BTl

Falls i < j: Elemente tauschen, i++, j——
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Wie macht man die Umsortlerung7

array

.ﬂﬁﬂ.@ T Pivot ist an Pos 0.
Initialisiere i = lo 4 1, = hi
.ﬂn!.@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot
..EE.@ Falls i < j: Elemente tauschen, i++, j——
..E..@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

- BIlal2]e)
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Wie macht man die Umsortlerung7

array

@ T Pivot ist an Pos 0.
Initialisiere i = lo 4 1, = hi

@ s i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ o Falls i < j: Elemente tauschen, i++, j——
@ s i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ i > j: noch Pivot an Pos j tauschen
@ cee Fertig!
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Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i=10 + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i+=1

8 while array[j] > pivot:

9 j-—=1

10 if 1 >= j:

11 break

12

13 array[i], array[j] = arrayl[jl, arrayl[i]
14 i, j=4i+1,3j-1

15 array[lo], array[j]l = array[j], array[lo]

16 return j
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Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
m O(log, n) rekursive Aufrufe
m jeweils hi-lo Schliisselvergleiche in Partitionierung

m auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)
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Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
m O(log, n) rekursive Aufrufe
m jeweils hi-lo Schliisselvergleiche in Partitionierung

m auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)

Worst case: Pivot-Element immer kleinstes oder grosstes Element
m insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Linge
nn—1...,2.
m jeweils hi-lo Schliisselvergleiche in Partitionierung

— 0O(n?)
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Quicksort: Laufzeit Il

Average case:

m Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

m O(log n) rekursive Aufrufe
m insgesamt O(nlog n)
m etwa 39% langsamer als best case
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Quicksort: Laufzeit Il

Average case:

m Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

m O(log n) rekursive Aufrufe
m insgesamt O(nlog n)
m etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.
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Heapsort

m Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

m Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

m Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

m Die Laufzeit von Heapsort ist leicht iiberlinear.

m Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.
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Nicht vergleichsbasierte Verfahren
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Sortierverfahren

Vergleichsbasierte
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Countingsort: Idee

»Sortieren durch Zahlen*
m Annahme: Elemente sind aus Bereich 0, ..., k — 1.

m Laufe einmal iiber die Eingabesequenz und zihle dabei,
wie oft jedes Element vorkommt.

m Sei #/ die Anzahl der Vorkommen von Element i.

m lteriere i=0,...,k—1 und
schreibe jeweils #i-mal Element / in die Sequenz.
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Countingsort: Algorithmus

def sort(array, k):
counts = [0] * k # list of k zeros
for elem in array:
counts[elem] += 1

pos = 0
for i in range(k):
occurrences_of_i = counts[i]
for j in range(occurrences_of_i):
10 array[pos + jl =1
11 pos += occurrences_of_i

1
2
3
4
5
6
7
8
9
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Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
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Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

m Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Nicht vergleichsbasierte Verfahren Zusammenf.
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Radixsort: ldee

., Sortieren durch Fachverteilen*

m Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

usw. bis alle Stellen betrachtet wurden.
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286
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Radixsort: Beispiel

m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8 9
462 983 96
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96

Zusammenf.




Radixsort: Beispiel
m Eingabe: 263, 983, 96, 462, 286
m Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286
m Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8
462 983
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
m Aufteilung nach drittletzter Stelle:

0 1 2 3 4 5 6 7 8
096 263 462
286

Aufsammeln ergibt: 96, 263, 286, 462, 983

Untere anke eapsol Nicht vergleichsbasierte Verfahren

9
96

983
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Jupyter-Notebook

@
_
Jupyter
o

Jupyter-Notebook: radix_sort.ipynb
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Radixsort: Algorithmus (fiir beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element
6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) 7, base
10 buckets[digit] .append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1
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Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))
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Radixsort: Laufzeit

m m: Maximale Anzahl Stellen in Reprdsentation
mit gegebener Basis b.

m n: Lange der Eingabesequenz
m Laufzeit in O(m- (n+ b))

Fir festes m und b hat Radixsort lineare Laufzeit.
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Zusammenfassung

m Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht iiberlineare Laufzeit.

m Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

m Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

m Sie machen jedoch zusatzliche Einschréankungen
an die verwendeten Schliissel.
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