
Algorithmen und Datenstrukturen
A6. Laufzeitanalyse: Top-Down-Mergesort und

Landau-Symbole

Marcel Lüthi and Gabriele Röger

Universität Basel

27. Februar 2020



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Was bisher geschah und wie es weiter geht

Letztes Mal: sehr detaillierte Laufzeitanalyse für Selectionsort
und Bottom-Up-Mergesort

heute noch analoge Analyse für Top-Down-Mergesort als
Beispiel eines rekursiven Divide-and-Conquer-Verfahrens

danach Landau-Symbole für asymptotisches Laufzeitverhalten

und die
”
schnelle” Laufzeitanalyse in der Praxis



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Top-Down-Mergesort



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Merge-Schritt-Ergebnis vom letzten Mal

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 sort_aux(array, tmp, lo, mid)

10 sort_aux(array, tmp, mid + 1, hi)

11 merge(array, tmp, lo, mid, hi)

Analyse für m = hi− lo + 1
c0 für Zeile 6–7
c1 für Zeile 6–8
c2m für Merge-Schritt



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse I

Laufzeit sort aux

T (m) = c1 + 2T (m/2) + c2m für m = 2k , k ∈ N0

T (1) = c0

Rekursive Gleichung

Wir suchen obere Schranke, die nur von m abhängt.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse III

m keine Zweierpotenz? 2k−1 < m < 2k

T (m) = c1 + T (bm/2c) + T (dm/2e) + c2m

≤ c1 + 2T (2k/2) + c2m

≤ c2k log2 2k für irgendein c

< 2cm log2(2m) (2k < 2m, da m > 2k−1)

= 2cm(log2 2 + log2m)

= 2cm(1 + log2m) ≤ 4cm log2m (1 ≤ log2m für m ≥ 2)

Obere Schranke c ′m log2m gilt allgemein (für irgendein c ′)

Untere Schranke?
T (m) =

∑k−1
i=0 2ic1 + c2m log2m + c0m ≥ c2m log2m

Untere Schranke cm log2m (für irgendein c)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse III

m keine Zweierpotenz? 2k−1 < m < 2k

T (m) = c1 + T (bm/2c) + T (dm/2e) + c2m

≤ c1 + 2T (2k/2) + c2m

≤ c2k log2 2k für irgendein c

< 2cm log2(2m) (2k < 2m, da m > 2k−1)

= 2cm(log2 2 + log2m)

= 2cm(1 + log2m) ≤ 4cm log2m (1 ≤ log2m für m ≥ 2)

Obere Schranke c ′m log2m gilt allgemein (für irgendein c ′)

Untere Schranke?
T (m) =

∑k−1
i=0 2ic1 + c2m log2m + c0m ≥ c2m log2m

Untere Schranke cm log2m (für irgendein c)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse III

m keine Zweierpotenz? 2k−1 < m < 2k

T (m) = c1 + T (bm/2c) + T (dm/2e) + c2m

≤ c1 + 2T (2k/2) + c2m

≤ c2k log2 2k für irgendein c

< 2cm log2(2m) (2k < 2m, da m > 2k−1)

= 2cm(log2 2 + log2m)

= 2cm(1 + log2m) ≤ 4cm log2m (1 ≤ log2m für m ≥ 2)

Obere Schranke c ′m log2m gilt allgemein (für irgendein c ′)

Untere Schranke?
T (m) =

∑k−1
i=0 2ic1 + c2m log2m + c0m ≥ c2m log2m

Untere Schranke cm log2m (für irgendein c)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse IV

sort?

Aufruf von sort aux mit m = n = Länge der Eingabe

Anlegen/Kopieren von Array geht in linearer Zeit
→ kann durch Anpassung der Konstanten abgedeckt werden.

Theorem

Top-Down-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0,
cn log2 n ≤ T (n) ≤ c ′n log2 n.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse IV

sort?

Aufruf von sort aux mit m = n = Länge der Eingabe

Anlegen/Kopieren von Array geht in linearer Zeit
→ kann durch Anpassung der Konstanten abgedeckt werden.

Theorem

Top-Down-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0,
cn log2 n ≤ T (n) ≤ c ′n log2 n.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Top-Down-Mergesort: Analyse IV

sort?

Aufruf von sort aux mit m = n = Länge der Eingabe

Anlegen/Kopieren von Array geht in linearer Zeit
→ kann durch Anpassung der Konstanten abgedeckt werden.

Theorem

Top-Down-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0,
cn log2 n ≤ T (n) ≤ c ′n log2 n.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Landau-Notation



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Ergebnis für Mergesort

”
Die Laufzeit von Mergesort wächst genauso schnell wie n log2 n.“

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Wir haben Terme niedrigerer Ordnung (Konstanten und n) in
der Abschätzung ignoriert bzw. verschwinden lassen.

Wir haben uns nicht für die genauen Werte der Konstanten
interessiert, es reicht, wenn irgendwelche passenden
Konstanten existieren.

Die Laufzeit für kleine n ist nicht so wichtig.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Ergebnis für Mergesort

”
Die Laufzeit von Mergesort wächst genauso schnell wie n log2 n.“

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Wir haben Terme niedrigerer Ordnung (Konstanten und n) in
der Abschätzung ignoriert bzw. verschwinden lassen.

Wir haben uns nicht für die genauen Werte der Konstanten
interessiert, es reicht, wenn irgendwelche passenden
Konstanten existieren.

Die Laufzeit für kleine n ist nicht so wichtig.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Ergebnis für Mergesort

”
Die Laufzeit von Mergesort wächst genauso schnell wie n log2 n.“

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Wir haben Terme niedrigerer Ordnung (Konstanten und n) in
der Abschätzung ignoriert bzw. verschwinden lassen.

Wir haben uns nicht für die genauen Werte der Konstanten
interessiert, es reicht, wenn irgendwelche passenden
Konstanten existieren.

Die Laufzeit für kleine n ist nicht so wichtig.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Ergebnis für Mergesort

”
Die Laufzeit von Mergesort wächst genauso schnell wie n log2 n.“

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Wir haben Terme niedrigerer Ordnung (Konstanten und n) in
der Abschätzung ignoriert bzw. verschwinden lassen.

Wir haben uns nicht für die genauen Werte der Konstanten
interessiert, es reicht, wenn irgendwelche passenden
Konstanten existieren.

Die Laufzeit für kleine n ist nicht so wichtig.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Ergebnis für Mergesort

”
Die Laufzeit von Mergesort wächst genauso schnell wie n log2 n.“

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Wir haben Terme niedrigerer Ordnung (Konstanten und n) in
der Abschätzung ignoriert bzw. verschwinden lassen.

Wir haben uns nicht für die genauen Werte der Konstanten
interessiert, es reicht, wenn irgendwelche passenden
Konstanten existieren.

Die Laufzeit für kleine n ist nicht so wichtig.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr bisherige Ergebnisse

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Theorem

Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c > 0, c ′ > 0, n0 > 0, so dass für n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

Können wir das nicht irgendwie kompakter aufschreiben?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr bisherige Ergebnisse

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.

Theorem

Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Theorem

Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c > 0, c ′ > 0, n0 > 0, so dass für n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

Können wir das nicht irgendwie kompakter aufschreiben?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Edmund Landau

Edmund Landau

deutscher Mathematiker
(1877–1938)

analytische Zahlentheorie

kein Freund angewandter
Mathematik

International: Bachmann–Landau-Notation auch nach
Paul Gustav Heinrich Bachmann (deutscher Mathematiker)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Edmund Landau

Edmund Landau

deutscher Mathematiker
(1877–1938)

analytische Zahlentheorie

kein Freund angewandter
Mathematik

International: Bachmann–Landau-Notation auch nach
Paul Gustav Heinrich Bachmann (deutscher Mathematiker)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Landau-Symbol Theta

Definition

Für eine Funktion g : N→ R ist Θ(g) die Menge aller Funktionen
f : N→ R, die genauso schnell wachsen wie g :

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

”
Die Laufzeit von Mergesort ist in Θ(n log2 n).“

oder auch

”
Die Laufzeit von Mergesort ist Θ(n log2 n).“



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Landau-Symbol Theta

Definition

Für eine Funktion g : N→ R ist Θ(g) die Menge aller Funktionen
f : N→ R, die genauso schnell wachsen wie g :

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

”
Die Laufzeit von Mergesort ist in Θ(n log2 n).“

oder auch

”
Die Laufzeit von Mergesort ist Θ(n log2 n).“



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Landau-Symbol Theta: Illustration

f ∈ Θ(g)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Mehr Landau-Symbole

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

O für
”
Ordnung“ der Funktion

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Es gilt Θ(g) = O(g) ∩ Ω(g).

Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Seltener benötigte Landau-Symbole

”
f wächst langsamer als g“

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

”
f wächst schneller als g“

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Aussprache: ω: kleines Omega



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Seltener benötigte Landau-Symbole

”
f wächst langsamer als g“

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

”
f wächst schneller als g“

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Aussprache: ω: kleines Omega



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Seltener benötigte Landau-Symbole

”
f wächst langsamer als g“

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

”
f wächst schneller als g“

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Aussprache: ω: kleines Omega



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen nk):

g Wachstum

1 konstant
log n logarithmisch

n linear
n log n leicht überlinear

n2 quadratisch
n3 kubisch
nk polynomiell (Konstante k)
2n exponentiell



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Θ

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Θ

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Θ

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Θ

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Θ

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Θ

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
f4(n) = 8 ∈ Θ(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Warum ist das so?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Warum ist das so?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Warum ist das so?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Warum ist das so?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Warum ist das so?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiele Gross-O

Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

Beispiele

f1(n) = 8n2 − 3n − 9 ∈ O(n2)
f2(n) = n3 − 3n log2 n ∈ O(n3)
f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

Warum ist das so?



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Zusammenhänge

Es gilt:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(für k ≥ 2)

O(nk1) ⊂ O(nk2) für k1 < k2
z.B. O(n2) ⊂ O(n3)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Zusammenhänge

Es gilt:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(für k ≥ 2)

O(nk1) ⊂ O(nk2) für k1 < k2
z.B. O(n2) ⊂ O(n3)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Rechenregeln

Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Rechenregeln

Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Rechenregeln

Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Grund für Beschränkung auf Term höchster Ordnung

Beispiel: 5n3 + 2n ∈ O(n3)

Wegen Regel bzgl. Multiplikation mit Konstante:

5n3 ∈ O(n3)
2n ∈ O(n)

Wegen O(n) ⊂ O(n3) und 2n ∈ O(n):

2n ∈ O(n3)

Wegen Summenregel:

5n3 + 2n ∈ O(n3 + n3)

Mit Multiplikation mit Konstante (bei Klasse):

5n3 + 2n ∈ O(n3)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Anwendung



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte I

konstante Operation

var = 4 O(1)

Sequenz konstanter Operationen

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte I

konstante Operation

var = 4 O(1)

Sequenz konstanter Operationen

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte II

Schleife

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i hängt von n ab



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte II

Schleife

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i hängt von n ab



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Achtung: Kann zu unnötig hoher Abschätzung führen,
Achtung: wenn teurer Fall nur für kleine n auftritt
Achtung: (durch Konstante begrenzt).



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Achtung: Kann zu unnötig hoher Abschätzung führen,
Achtung: wenn teurer Fall nur für kleine n auftritt
Achtung: (durch Konstante begrenzt).



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Analyse Insertionsort mit Kostenmodell

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n):

4 for j in range(i, 0, -1):

5 if array[j] < array[j-1]:

6 tmp = array[j]

7 array[j] = array[j-1]

8 array[j-1] = tmp

9 else:

10 break

Best case: n − 1 Schlüsselvergleiche, 0 Vertauschungen

Worst case:∑n−1
i=1 i ∈ Θ(n2) Schlüsselvergleiche und Vertauschungen



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Zusammenfassung



Beispiel: Top-Down-Mergesort Landau-Notation Anwendung Zusammenfassung

Zusammenfassung

Mergesort hat auch in der Top-Down-Variante leicht
überlineare Laufzeit.

Mit Landau-Symbolen definiert man Klassen von Funktionen,
die nicht schneller/nicht langsamer/. . . wachsen als eine
Funktion g .

O(g): Wachstum nicht schneller als g
Θ(g): Wachstum im Wesentlichen wie g

Insertionsort hat

im besten Fall Laufzeit Θ(n)
im schlechtesten Fall Laufzeit Θ(n2)


	Beispiel: Top-Down-Mergesort
	

	Landau-Notation
	

	Anwendung
	

	Zusammenfassung
	


