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Was bisher geschah und wie es weiter geht

I Letztes Mal: sehr detaillierte Laufzeitanalyse für Selectionsort
und Bottom-Up-Mergesort

I heute noch analoge Analyse für Top-Down-Mergesort als
Beispiel eines rekursiven Divide-and-Conquer-Verfahrens

I danach Landau-Symbole für asymptotisches Laufzeitverhalten

I und die
”
schnelle” Laufzeitanalyse in der Praxis
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

A6.1 Beispiel: Top-Down-Mergesort
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

Merge-Schritt-Ergebnis vom letzten Mal

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

Top-Down-Mergesort

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 sort_aux(array, tmp, lo, mid)

10 sort_aux(array, tmp, mid + 1, hi)

11 merge(array, tmp, lo, mid, hi)

Analyse für m = hi− lo + 1
c0 für Zeile 6–7
c1 für Zeile 6–8
c2m für Merge-Schritt
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse I

Laufzeit sort aux

I T (m) = c1 + 2T (m/2) + c2m für m = 2k , k ∈ N0

I T (1) = c0
I Rekursive Gleichung

I Wir suchen obere Schranke, die nur von m abhängt.
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2c2m + 4T (m/4)

= c1(1 + 2) + 2c2m + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3c2m + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)

+ c2mk + c02k

= c1
(∑k−1

i=0
2i
)

+ c2m log2m + c0m (k = log2m, 2k = m)

≤ c1k2k−1 + c2m log2m + c0m

≤ c1m log2m + c2m log2m + c0m

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse III

m keine Zweierpotenz? 2k−1 < m < 2k

T (m) = c1 + T (bm/2c) + T (dm/2e) + c2m

≤ c1 + 2T (2k/2) + c2m

≤ c2k log2 2k für irgendein c

< 2cm log2(2m) (2k < 2m, da m > 2k−1)

= 2cm(log2 2 + log2m)

= 2cm(1 + log2m) ≤ 4cm log2m (1 ≤ log2m für m ≥ 2)

Obere Schranke c ′m log2m gilt allgemein (für irgendein c ′)

Untere Schranke?
T (m) =

∑k−1
i=0 2ic1 + c2m log2m + c0m ≥ c2m log2m

Untere Schranke cm log2m (für irgendein c)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse IV

sort?

I Aufruf von sort aux mit m = n = Länge der Eingabe

I Anlegen/Kopieren von Array geht in linearer Zeit
→ kann durch Anpassung der Konstanten abgedeckt werden.

Theorem
Top-Down-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0,
cn log2 n ≤ T (n) ≤ c ′n log2 n.
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

A6.2 Landau-Notation
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Ergebnis für Mergesort

”
Die Laufzeit von Mergesort wächst genauso schnell wie n log2 n.“

Theorem
Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

I Wir haben Terme niedrigerer Ordnung (Konstanten und n) in
der Abschätzung ignoriert bzw. verschwinden lassen.

I Wir haben uns nicht für die genauen Werte der Konstanten
interessiert, es reicht, wenn irgendwelche passenden
Konstanten existieren.

I Die Laufzeit für kleine n ist nicht so wichtig.
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Mehr bisherige Ergebnisse

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.

Theorem
Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.

Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c > 0, c ′ > 0, n0 > 0, so dass für n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

Können wir das nicht irgendwie kompakter aufschreiben?
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Edmund Landau

Edmund Landau

I deutscher Mathematiker
(1877–1938)

I analytische Zahlentheorie

I kein Freund angewandter
Mathematik

International: Bachmann–Landau-Notation auch nach
Paul Gustav Heinrich Bachmann (deutscher Mathematiker)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Landau-Symbol Theta

Definition

Für eine Funktion g : N→ R ist Θ(g) die Menge aller Funktionen
f : N→ R, die genauso schnell wachsen wie g :

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

”
Die Laufzeit von Mergesort ist in Θ(n log2 n).“

oder auch

”
Die Laufzeit von Mergesort ist Θ(n log2 n).“
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Landau-Symbol Theta: Illustration

f ∈ Θ(g)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27. Februar 2020 17 / 34

A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Mehr Landau-Symbole

I
”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

I O für
”
Ordnung“ der Funktion

I
”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

I Es gilt Θ(g) = O(g) ∩ Ω(g).

I Es gilt f ∈ Ω(g) gdw. g ∈ O(f ).

I In der Informatik interessieren wir uns oft nur für die
Begrenzung des Laufzeitwachstums nach oben: O statt Θ

Aussprache: Θ: Theta, Ω: Omega, O: Oh
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Seltener benötigte Landau-Symbole

I
”
f wächst langsamer als g“

o(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

I
”
f wächst schneller als g“

ω(g) = {f | ∀c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

Aussprache: ω: kleines Omega
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen nk):

g Wachstum

1 konstant
log n logarithmisch

n linear
n log n leicht überlinear

n2 quadratisch
n3 kubisch
nk polynomiell (Konstante k)
2n exponentiell
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Beispiele Θ

I Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

I Beispiele
I f1(n) = 5n2 + 3n − 9 ∈ Θ(n2)
I f2(n) = 3n log2 n + 2n2 ∈ Θ(n2)
I f3(n) = 9n log2 n + n + 17 ∈ Θ(n log n)
I f4(n) = 8 ∈ Θ(1)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Beispiele Gross-O

I Bei der Analyse interessiert nur der Term höchster Ordnung
(= am schnellsten wachsender Summand) einer Funktion.

I Beispiele
I f1(n) = 8n2 − 3n − 9 ∈ O(n2)
I f2(n) = n3 − 3n log2 n ∈ O(n3)
I f3(n) = 3n log2 n + 1000n + 10200 ∈ O(n log n)

I Warum ist das so?
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Zusammenhänge

Es gilt:

I O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(für k ≥ 2)

I O(nk1) ⊂ O(nk2) für k1 < k2
z.B. O(n2) ⊂ O(n3)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Rechenregeln

I Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

I Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

I Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Landau-Notation

Grund für Beschränkung auf Term höchster Ordnung

Beispiel: 5n3 + 2n ∈ O(n3)

I Wegen Regel bzgl. Multiplikation mit Konstante:
I 5n3 ∈ O(n3)
I 2n ∈ O(n)

I Wegen O(n) ⊂ O(n3) und 2n ∈ O(n):
I 2n ∈ O(n3)

I Wegen Summenregel:
I 5n3 + 2n ∈ O(n3 + n3)

I Mit Multiplikation mit Konstante (bei Klasse):
I 5n3 + 2n ∈ O(n3)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Anwendung

A6.3 Anwendung
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Anwendung

Schnelle O-Analyse für häufige Code-Konstrukte I

I konstante Operation

var = 4 O(1)

I Sequenz konstanter Operationen

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Anwendung

Schnelle O-Analyse für häufige Code-Konstrukte II

I Schleife

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i hängt von n ab
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A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Anwendung

Schnelle O-Analyse für häufige Code-Konstrukte III

I if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Achtung: Kann zu unnötig hoher Abschätzung führen,
Achtung: wenn teurer Fall nur für kleine n auftritt
Achtung: (durch Konstante begrenzt).
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Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

I Worst case: break-Fall tritt nie ein.

I O(1 + n · n · 1) = O(n2)

I Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.
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Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

I Best case: break jeweils direkt bei j = i

I O(1 + n · 1 · 1) = O(n)

I Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27. Februar 2020 31 / 34
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Analyse Insertionsort mit Kostenmodell

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n):

4 for j in range(i, 0, -1):

5 if array[j] < array[j-1]:

6 tmp = array[j]

7 array[j] = array[j-1]

8 array[j-1] = tmp

9 else:

10 break

I Best case: n − 1 Schlüsselvergleiche, 0 Vertauschungen

I Worst case:∑n−1
i=1 i ∈ Θ(n2) Schlüsselvergleiche und Vertauschungen
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A6.4 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27. Februar 2020 33 / 34

A6. Laufzeitanalyse: Top-Down-Mergesort und Landau-Symbole Zusammenfassung

Zusammenfassung

I Mergesort hat auch in der Top-Down-Variante leicht
überlineare Laufzeit.

I Mit Landau-Symbolen definiert man Klassen von Funktionen,
die nicht schneller/nicht langsamer/. . . wachsen als eine
Funktion g .
I O(g): Wachstum nicht schneller als g
I Θ(g): Wachstum im Wesentlichen wie g

I Insertionsort hat
I im besten Fall Laufzeit Θ(n)
I im schlechtesten Fall Laufzeit Θ(n2)
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