
Algorithmen und Datenstrukturen
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Exakte Laufzeitanalyse unrealistisch

Wäre schön: Formel, die für konkrete Eingabe berechnet,
wie lange das Programm läuft.

exakte Laufzeitprognose schwierig, da zu viele Einflüsse:

Geschwindigkeit und Architektur des Computers
Programmiersprache
Compilerversion
aktuelle Auslastung (was sonst noch läuft)
Cacheverhalten

Wir können und wollen das nicht alles in die Formel aufnehmen.
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Laufzeitanalyse: Vereinfachung 1

Zähle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

Idealerweise: eine Zeile Maschinencode oder – noch präziser –
ein Prozessorzyklus

Stattdessen: Anweisungen, die konstante Zeit benötigen

konstante Zeit: Laufzeit unabhängig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code
aber: auch beachten, was dahinter steht
z.B. Schritte innerhalb einer aufgerufenen Funktion

Wichtig: Laufzeit ungefähr proportional zu Anzahl Operationen
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Laufzeitanalyse: Vereinfachung 2

Schätze ab statt genau zu zählen!

Meistens Abschätzung nach oben (
”
obere Schranke“)

Wie viele Schritte braucht das Programm höchstens?

Manchmal auch Abschätzung nach unten (
”
untere Schranke“)

Wie viele Schritte werden mindestens ausgeführt?

”
Laufzeit“ für Abschätzung der Anzahl ausgeführter Operationen
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Laufzeitanalyse: Vereinfachung 3

Abschätzung nur abhängig von Eingabegrösse

T (n): Laufzeit bei Eingabe der Grösse n

Bei adaptiven Verfahren unterscheiden wir

Beste Laufzeit (best case)
Laufzeit bei günstigstmöglicher Eingabe
Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestmöglicher Eingabe
Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit über alle Eingaben der Grösse n
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Kostenmodelle

Auch: Analyse mit Kostenmodell

Identifiziere grundlegende Operationen der Algorithmenklasse
z.B. für vergleichsbasierte Sortierverfahren

Vergleich von Schlüsselpaaren
Tausch zweier Elemente oder Bewegung eines Elementes

Schätze Anzahl dieser Operationen ab.
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Beispiel aus C++-Referenz

http://www.cplusplus.com/reference/algorithm/sort/

http://www.cplusplus.com/reference/algorithm/sort/
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Beispiel: Selectionsort
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Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]
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Selectionsort: Analyse I

Wir zeigen: T (n) ≤ c ′ · n2 für n ≥ 1 und irgendeine Konstante c ′

Äussere Schleife (3-10) und innere Schleife (6-8)

Anzahl Operationen für jede Iteration der äusseren Schleife:

Konstante a für Anzahl Operationen in Zeilen 7 und 8
Konstante b für Anzahl Operationen in Zeilen 5 und 10

i # Operationen
0 a(n − 1) + b
1 a(n − 2) + b

. . .
n-2 a · 1 + b

Insgesamt: T (n) =
∑n−2

i=0 (a(n − (i + 1)) + b)
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Selectionsort: Analyse II

T (n) =
∑n−2

i=0
(a(n − (i + 1)) + b)

=
∑n−1

i=1
(a(n − i) + b)

= a
∑n−1

i=1
(n − i) + b(n − 1)

= 0.5a(n − 1)n + b(n − 1)

≤ 0.5an2 + b(n − 1)

≤ 0.5an2 + b(n − 1)n

≤ 0.5an2 + bn2

= (0.5a + b)n2

⇒ mit c ′ = (0.5a + b) gilt für n ≥ 1, dass T (n) ≤ c ′ · n2
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Selectionsort: Analyse III

Zu grosszügig abgeschätzt?

Wir zeigen für n ≥ 2: T (n) ≥ c · n2 für irgendeine Konstante c

T (n) = · · · = 0.5a(n − 1)n + b(n − 1)

≥ 0.5a(n − 1)n

≥ 0.25an2 (n − 1 ≥ 0.5n für n ≥ 2)

⇒ mit c = 0.25a gilt für n ≥ 2, dass T (n) ≥ c · n2

Theorem

Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c > 0, c ′ > 0, n0 > 0, so dass für n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.
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Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?

Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

Bei 1 Tsd. Elementen warten wir
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 10−8 · (104)2 = 1 Sekunde

Bei 100 Tsd. Elementen 10−8 · (105)2 = 100 Sekunden

Bei 1 Mio. Elementen 10−8 · (106)2 Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 10−8 · (109)2 Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind

”
nur“ 4 GB.

Quadratische Laufzeit problematisch für grosse Eingaben
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Selectionsort mit Kostenmodell

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

→ n-1 mal Tausch zweier Elemente (
”
linear“)

→ 0.5(n-1)n Schlüsselvergleiche (
”
quadratisch“)
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Exkurs: Logarithmus
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Logarithmus

In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

Dies ist bei der Analyse von Laufzeiten oft der Fall.

Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

logb x = y gdw. by = x .

Beispiele: log2 8 = 3, da 23 = 8
Beispiele: log3 81 = 4, da 34 = 81

logb a intuitiv (wenn das glatt aufgeht):

”
Wie oft muss man a durch b teilen bis man bei 1 ist?“
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Logarithmus: Illustration
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Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(ax)y = axy = (ay )x und axay = ax+y :

Produktregel logb(xy) = logb x + logb y
Potenzrechnung logb(x r ) = r logb x

Basisumrechnung logb x = loga x/ loga b
Summenregel logb(x + y) = logb x + logb(1 + y/x)
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Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man öfters Ausdrücken der
Form alogb x . Wie bekommt man da den Logarithmus aus dem
Exponenten?

Beispiel: 5log2 x

Wir verwenden 5 = 2log2 5.

5log2 x = (2log2 5)
log2 x

= 2log2 5 log2 x

= 2log2 x log2 5

= (2log2 x)
log2 5

= x log2 5

≈ x2.32



Laufzeitanalyse Allgemein Beispiel: Selectionsort Exkurs: Logarithmus Beispiel: Mergesort Zusammenfassung

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man öfters Ausdrücken der
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Beispiel: Mergesort
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Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Wir analysieren Laufzeit für m := hi− lo + 1

c1

c2

c3
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Merge-Schritt: Analyse

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

Für m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.
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Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

Wir verwenden für die Abschätzung:
c1 Zeilen 2–4
c2 Zeilen 6 und 12
c3 Zeilen 8,9,11

Annahme: merge benötigt
Annahme: c4(hi-lo+1) Operationen.
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Bottom-Up-Mergesort: Analyse I

Annahme: n = 2k für ein k ∈ N>0

Iterationen der äusseren Schleife (m für hi-lo+1):

Iteration 1: n/2 mal innere Schleife mit Merge für m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

Iteration 2: n/4 mal innere Schleife mit Merge für m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

. . .

Äussere Schleife endet nach letzter Iteration `.

Iteration `: 1 mal innere Schleife mit Merge für m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Insgesamt T (n) ≤ c1 + `(c2 + c3n + c4n) ≤ `(c1 + c2 + c3 + c4)n
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Bottom-Up-Mergesort: Analyse II

Wie gross ist `?

In Iteration i ist für den Merge-Schritt m = 2i

In Iteration ` hat Merge-Schritt m = 2` = n

Da n = 2k ist ` = k = log2 n.

Mit c := c1 + c2 + c3 + c4 erhalten wir T (n) ≤ cn log2 n.
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Bottom-Up-Mergesort: Analyse III

Was, wenn n keine Zweierpotenz, also 2k−1 < n < 2k?

Trotzdem k Iterationen der äusseren Schleife.

Innere Schleife verwendet nicht mehr Operationen.

T (n) ≤ cnk = cn(blog2 nc+ 1) ≤ 2cn log2 n (für k > 2)
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Bottom-Up-Mergesort: Analyse IV

Ähnliche Abschätzung auch für untere Schranke möglich.
→ Übung

Theorem

Bottom-Up-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0 gilt
cn log2 n ≤ T (n) ≤ c ′n log2 n.
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Leicht überlineare Laufzeit

Leicht überlineare Laufzeit n log2 n:
→ doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?

Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

Bei 1 Tsd. Elementen warten wir
10−8 · 103 log2(103) ≈ 0.0001 Sekunden.

Bei 10 Tsd. Elementen ≈ 0.0013 Sekunden

Bei 100 Tsd. Elementen ≈ 0.017 Sekunden

Bei 1 Mio. Elementen ≈ 0.2 Sekunden

Bei 1 Mrd. Elementen ≈ 299 Sekunden

Laufzeit n log2 n nicht viel schlechter als lineare Laufzeit
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Mergesort mit Kostenmodell I

Schlüsselvergleiche

Werden nur in merge durchgeführt.

Mergen zweier Teilfolgen der Länge m und n benötigt
bestenfalls min(n,m) und schlimmstenfalls n + m − 1
Vergleiche.

Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt c , c ′ > 0, so dass Anzahl Vergleiche
zwischen cn und c ′n liegt.

→ Anzahl der zum Sortieren einer Sequenz notwendigen
Schlüsselvergleiche ist leicht überlinear in der Länge der
Sequenz (analog zu Laufzeitanalyse).
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Mergesort mit Kostenmodell II

Elementbewegungen

Werden nur in merge durchgeführt.

2n Bewegungen für Sequenz der Länge n.

Insgesamt für Mergesort leicht überlinear
(analog zu Schlüsselvergleichen)
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Zusammenfassung
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Zusammenfassung

Bei der Laufzeitanalyse schätzen wir die Anzahl der
ausgeführten Operationen ab.

Wir zählen nicht exakt.
Wir ignorieren, wie lange eine Operation tatsächlich dauert.
Hauptsache: Laufzeit ungefähr proportional zu Anzahl
Operationen.

Selectionsort hat quadratische Laufzeit und benötigt linear
viele Vertauschungen und quadratisch viele
Schlüsselvergleiche.

Mergesort hat leicht überlineare Laufzeit, Schlüsselvergleiche
und Elementbewegungen.
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