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[e]e] lele]elele)

Exakte Laufzeitanalyse unrealistisch

m Wire schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.

m exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

m Geschwindigkeit und Architektur des Computers

Programmiersprache

Compilerversion

aktuelle Auslastung (was sonst noch lduft)

Cacheverhalten

Wir kdnnen und wollen das nicht alles in die Formel aufnehmen.
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Logarithmus Zusammenfas:
[e]e]e] le]elele) (e]e]

Laufzeitanalyse: Vereinfachung 1

Zahle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

m |dealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
m Stattdessen: Anweisungen, die konstante Zeit bendtigen
m konstante Zeit: Laufzeit unabhangig von Eingabe
m ignoriere Laufzeitunterschiede verschiedener Anweisungen
m z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
m grob: Operation = eine Zeile Code
m aber: auch beachten, was dahinter steht
z.B. Schritte innerhalb einer aufgerufenen Funktion

Wichtig: Laufzeit ungefdhr proportional zu Anzahl Operationen
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Laufzeitanalyse: Vereinfachung 2

Schatze ab statt genau zu zahlen!

m Meistens Abschitzung nach oben (,,obere Schranke")
Wie viele Schritte braucht das Programm hochstens?

m Manchmal auch Abschitzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit" fiir Abschdtzung der Anzahl ausgefiihrter Operationen
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Laufzeitanalyse: Vereinfachung 3

Abschatzung nur abhangig von Eingabegrosse

m 7 (n): Laufzeit bei Eingabe der Grésse n
m Bei adaptiven Verfahren unterscheiden wir

m Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
m Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestmdglicher Eingabe
m Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grésse n
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[e]e]e]e]e]e] Jo)

Kostenmodelle

Auch: Analyse mit Kostenmodell

m |dentifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren
m Vergleich von Schliisselpaaren
m Tausch zweier Elemente oder Bewegung eines Elementes

m Schitze Anzahl dieser Operationen ab.
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Beispiel aus C+-+-Referenz

function template
std:SOrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and /ast: Performs approximately N*1ogz(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/


http://www.cplusplus.com/reference/algorithm/sort/
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Beispiel: Selectionsort



Beispiel: Selectionsort
0®00000

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =0, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(di + 1, n): # j = 4+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position % with minimum element

10 array[i], array[min_index] = array[min_index], array[il
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[e]e] le]elele)

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante c’
m Aussere Schleife (3-10) und innere Schleife (6-8)
m Anzahl Operationen fiir jede Iteration der dusseren Schleife:
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[e]e] le]elele)

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante c’
m Aussere Schleife (3-10) und innere Schleife (6-8)

m Anzahl Operationen fiir jede Iteration der dusseren Schleife:

m Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
m Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i ‘ # Operationen
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[e]e] le]elele)

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante c’
m Aussere Schleife (3-10) und innere Schleife (6-8)

m Anzahl Operationen fiir jede Iteration der dusseren Schleife:
m Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
m Konstante b fiir Anzahl Operationen in Zeilen 5 und 10
i | # Operationen
0|a(n—1)+b
1]an—2)+b
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[e]e] le]elele)

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante c’
m Aussere Schleife (3-10) und innere Schleife (6-8)

m Anzahl Operationen fiir jede Iteration der dusseren Schleife:

m Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
m Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen
0|a(n—1)+b
1]an—2)+b

n2|a-1+b»b
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[e]e] le]elele)

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante c’
m Aussere Schleife (3-10) und innere Schleife (6-8)

m Anzahl Operationen fiir jede Iteration der dusseren Schleife:

m Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
m Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

# Operationen

[
Olan—1)+b
1]a(n—2)+b

n-2 | a-1+b>b

m Insgesamt: T(n) = Y7 2(a(n — (i +1)) + b)



nalyse Allgemein Beispiel: Selectionsort Exkurs: Logarithmus eispiel: Mergesort Zusammenfassung
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Selectlonsort Analyse Il

T(n) = Zi_z(a(n —(i+1)+0b)

= Z,— (n—1i)+b)

= a3 0= i)+ b(n—1)
i=1

=0.5a(n—1)n+ b(n—1)

< 0.5an* 4 b(n — 1)

< 0.5an* 4+ b(n —1)n

< 0.5an” + bn?

= (0.5a + b)n?

= mit ¢’ = (0.5a+ b) gilt fiir n > 1, dass T(n) < ¢’ - n?
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Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c



Beispiel: Selectionsort
0000800

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
> 0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?



Beispiel: Selectionsort Exkurs: Logarithmus

0O000e00 0000«

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
> 0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?

Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c>0,c" >0,ny >0, so dass fiir n > ng: cn®> < T(n) < ¢'n.




Beispiel: Selectionsort
0000080

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit



Beispiel: Selectionsort
0000080

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Woas bedeutet das in der Praxis?

® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
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0000080

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 (103)2 =10"%.10% = 1072 = 0.02 Sekunden.
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0000080 0000«

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
10-¢8. (103)2 =10"%8.10% = 1072 = 0.02 Sekunden.
m Bei 10 Tsd. Elementen 1078 - (10%)2 = 1 Sekunde
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Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
m Bei 1 Tsd. Elementen warten wir
1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.
m Bei 10 Tsd. Elementen 1078 - (10%)2 = 1 Sekunde
m Bei 100 Tsd. Elementen 1078 . (105)2 = 100 Sekunden
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0000080 [

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
m Bei 1 Tsd. Elementen warten wir
1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.
m Bei 10 Tsd. Elementen 1078 - (10*)2 = 1 Sekunde
m Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden
m Bei 1 Mio. Elementen 108 - (10°)? Sekunden = 2.77 Stunden
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0000080 [

Selectionsort: Analyse IV

Quadratische Laufzeit:

doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
m Bei 1 Tsd. Elementen warten wir

1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 1078 - (10%)? = 1 Sekunde

Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden

Bei 1 Mio. Elementen 1078 - (10°)2 Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,nur* 4 GB.
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0000080 [

Selectionsort: Analyse IV

Quadratische Laufzeit:

doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
m Bei 1 Tsd. Elementen warten wir

1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 1078 . (10*)2 = 1 Sekunde

Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden

Bei 1 Mio. Elementen 1078 - (10°)2 Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,nur* 4 GB.

Quadratische Laufzeit problematisch fiir grosse Eingaben
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Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):
n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
# find index of minimum element at positions %, ..., n-1
min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1

if array[j] < array[min_index]:
min_index = j
# swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]




Beispiel: Selectionsort
000000e

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):
n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
# find index of minimum element at positions %, ..., n-1
min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1

if array[j] < array[min_index]:
min_index = j
# swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")



Beispiel: Selectionsort
000000e

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):
n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
# find index of minimum element at positions %, ..., n-1
min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1

if array[j] < array[min_index]:
min_index = j
# swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")
— 0.5(n-1)n Schliisselvergleiche (,,quadratisch™)
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[e] lele]e}

Logarithmus

m In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

m Dies ist bei der Analyse von Laufzeiten oft der Fall.

m Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

logp, x = y gdw. b = x.

m Beispiele: log,8 =3, da23 =38
Beispiele: log; 81 = 4, da 3* = 81
m log, a intuitiv (wenn das glatt aufgeht):
»Wie oft muss man a durch b teilen bis man bei 1 ist?“
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Logarithmus: Illustration

l— logsx — log.> — loggz —_ loggja:l

BEEEEEEEE




Exkurs: Logarithmus
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Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(@) =a¥ = (a¥)" und a¥a’ = a:



Exkurs: Logarithmus
[e]ele] To)

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(@) =a¥ = (a¥)" und a¥a’ = a:

Produktregel log,(xy) = log, x + log, y
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[e]ele] To)

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(@) =a¥ = (a¥)" und a¥a’ = a:

Produktregel log,(xy) = log, x + log, y
Potenzrechnung log,(x") = rlog, x



Exkurs: Logarithmus
[e]ele] To)

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(@) =a¥ = (a¥)" und a¥a’ = a:

Produktregel log,(xy) = log, x + log, y
Potenzrechnung log,(x") = rlog, x
Basisumrechnung log, x = log, x/ log, b



Exkurs: Logarithmus
[e]ele] To)

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(@) =a¥ = (a¥)" und a¥a’ = a:

Produktregel log,(xy) = log, x + log, y
Potenzrechnung log,(x") = rlog, x
Basisumrechnung log, x = log, x/ log, b

Summenregel log,(x + y) = log, x + log,(1 + y/x)



Logarithmus: Beispielrechnung
Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der

Form a'°85%. Wie bekommt man da den Logarithmus aus dem
Exponenten?



Exkurs: Logarithmus
0000e

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°85%. Wie bekommt man da den Logarithmus aus dem

Exponenten?

Beispiel: 5'982%
Wir verwenden 5 = 2/°825,



Exkurs: Logarithmus
0000e

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°85%. Wie bekommt man da den Logarithmus aus dem

Exponenten?

Beispiel: 5'°82%
Wir verwenden 5 = 2/°825
5|og2x _ (2|og2 5)Iog2x
—_ 2Iog2 5log, x
— 2Iog2x|og2 5
_ (2|og2 X)|°g2 5
_ Xlog2 5

~ X2.32
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90000000000

Beispiel: Mergesort



Beispiel: Mergesort
0®000000000

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i = 1lo

3 j =mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hs
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = arrayl[i]

7 i+=1

8 else:

9 tmp[k] = arrayl[j]

10 j+=1

11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]

Wir analysieren Laufzeit fiir m :=hi—lo+1



Beispiel: Mergesort
0®000000000

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):
a 2 i = 1lo
3 j =mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,hs
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = arrayl[i]
7 i+=1
@ 8 else:
9 tmp[k] = arrayl[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,ht
C3 |12 array[k] = tmp[k]

Wir analysieren Laufzeit fiir m :=hi—lo+1
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Merge-Schritt: Analyse

T(m) =cC +cm-+c3m
> (24 c3)m



Beispiel: Mergesort
00®00000000

Merge-Schritt: Analyse

T(m) =cC +cm-+c3m
> (24 c3)m

Fir m> 1:

P
2
I

ca+om+cm
<cm+oom+4 csm
(cit+c+c)m
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O0e00000000

Merge-Schritt: Analyse

T(m)=c+aom+cm
> (24 c3)m

Fir m> 1:

T(m)=c+aom+cm
<cm+coom+ cam
=(a+c+a)m

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’',ng >0, so dass fiir alle n > ny: cn < T(n) < c’n.
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8 000®0000000

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1  Zeilen 24 Annahme: merge bendtigt
¢ Zeilen 6 und 12 ca(hi-lo+1) Operationen.
c3 Zeilen 8,9,11
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0000®000000

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Ny
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0000®000000

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):



Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):

m [teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n



Beispiel: Mergesort
0000®000000

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):
m [teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 4+ 4cy) = o + 0.25¢c3n + can



Beispiel: Mergesort
0000®000000

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):
m [teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 4+ 4cy) = o + 0.25¢c3n + can
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O000@000000

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):

m [teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n

m Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 4+ 4cy) = o + 0.25¢c3n + can

.

m Aussere Schleife endet nach letzter Iteration /.



Beispiel: Mergesort Zusammenf.

O000@000000

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):
m [teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 4+ 4cy) = o + 0.25¢c3n + can

m Aussere Schleife endet nach letzter Iteration /.

m lteration /: 1 mal innere Schleife mit Merge fiir m=n
e+ n/n(cs+ ncy) = o+ c3+ can



aufzeitanalyse Allgemein

Exkurs: Logarithmus Beispiel: Mergesort Zusammenf.

0000®000000

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Ny

Iterationen der dusseren Schleife (m fiir hi-lo+1):
m [teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
Co + n/2(C3 + 2C4) =+ 0.5c3n+ ¢4n
m Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 4+ 4cy) = o + 0.25¢c3n + can

m Aussere Schleife endet nach letzter Iteration /.

m lteration /: 1 mal innere Schleife mit Merge fiir m=n
e+ n/n(cs+ ncy) = o+ c3+ can

Insgesamt T(n) < ¢+ ¥(ca + csn+ can) < l(c1 + o+ 3+ ca)n



yse Allgemein tionsort

ogarithmus Beispiel: Mergesort Zusammenfassung
00000800000

Bottom-Up-Mergesort: Analyse |l

Wie gross ist £7
m In Iteration / ist fiir den Merge-Schritt m = 2
m In Iteration ¢ hat Merge-Schritt m=2¢ =n
m Dan=2Kist { =k =log,n.

Mit ¢ := ¢1 + ¢ + ¢3 + ¢4 erhalten wir T(n) < cnlog, n.



yse Allgemein tionsort

ogarithmus Beispiel: Mergesort Zusammenfassung
00000080000

Bottom-Up-Mergesort: Analyse Il

Was, wenn n keine Zweierpotenz, also 2k~1 < n < 2k?
m Trotzdem k lterationen der dusseren Schleife.
m Innere Schleife verwendet nicht mehr Operationen.
m T(n) < cnk = cn(|log, n| + 1) < 2cnlog, n (fiir k > 2)



nalyse Allgemein

Selectionsort s: Logarithmus Beispiel: Mergesort Zusammenfassung
o] [e]e]e]e]e] 00000008000

Bottom-Up-Mergesort: Analyse |V

Ahn__liche Abschatzung auch fiir untere Schranke mdoglich.
— Ubung

Bottom-Up-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > nq gilt
cnlogy n < T(n) < c'nlog, n.




Beispiel: Mergesort
00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit



Beispiel: Mergesort
00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?

® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.



Beispiel: Mergesort
00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.



Beispiel: Mergesort
00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

m Bei 10 Tsd. Elementen ~ 0.0013 Sekunden



al alys e Selectionsort kurs: Logarithmus Beispiel: Mergesort Zusammenfassung

00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

m Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
m Bei 100 Tsd. Elementen ~ 0.017 Sekunden



aufz alyse Allgemein 3 Selectionsort kurs: Logarithmus Beispiel: Mergesort Zusammenf.

00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
Bei 100 Tsd. Elementen ~ 0.017 Sekunden

m Bei 1 Mio. Elementen ~ 0.2 Sekunden



aufz aly 3eis Sele kurs: Logarithmus Beispiel: Mergesort Zusammenf.

00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

m Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
m Bei 100 Tsd. Elementen = 0.017 Sekunden
m Bei 1 Mio. Elementen &~ 0.2 Sekunden
m Bei 1 Mrd. Elementen ~ 299 Sekunden



aufz alyse Allgemein 3 Selectionsort kurs: Logarithmus Beispiel: Mergesort Zusammenf.

00000000800

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
® Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.

m Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

m Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
m Bei 100 Tsd. Elementen = 0.017 Sekunden
m Bei 1 Mio. Elementen = 0.2 Sekunden
m Bei 1 Mrd. Elementen ~ 299 Sekunden

Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit



yse Allgemein Selectionsort ogarithmus Beispiel: Mergesort Zusammenfassung

00000000080

Mergesort mit Kostenmodell |

Schliisselvergleiche

m Werden nur in merge durchgefiihrt.

m Mergen zweier Teilfolgen der Linge m und n bendtigt
bestenfalls min(n, m) und schlimmstenfalls n+ m — 1
Vergleiche.

m Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
zwischen cn und ¢’n liegt.

— Anzahl der zum Sortieren einer Sequenz notwendigen
Schliisselvergleiche ist leicht iiberlinear in der Lange der
Sequenz (analog zu Laufzeitanalyse).



yse Allgemein onsort ogarithmus Beispiel: Mergesort Zusammenfassung

0000000000 e

Mergesort mit Kostenmodell |l

Elementbewegungen
m Werden nur in merge durchgefiihrt.
m 2n Bewegungen fiir Sequenz der Lange n.

m Insgesamt fiir Mergesort leicht iiberlinear
(analog zu Schliisselvergleichen)



Zusammenfassung



yse Allgemein Selec gar Zusammenfassung

oe

Zusammenfassung

m Bei der Laufzeitanalyse schitzen wir die Anzahl der
ausgefiihrten Operationen ab.

m Wir zdhlen nicht exakt.
m Wir ignorieren, wie lange eine Operation tatsdchlich dauert.
m Hauptsache: Laufzeit ungefahr proportional zu Anzahl
Operationen.
m Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

m Mergesort hat leicht iiberlineare Laufzeit, Schliisselvergleiche
und Elementbewegungen.
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