
Algorithmen und Datenstrukturen
A5. Laufzeitanalyse: Einführung, Selection- und Mergesort

Marcel Lüthi and Gabriele Röger

Universität Basel

26. Februar 2020

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 1 / 35

Algorithmen und Datenstrukturen
26. Februar 2020 — A5. Laufzeitanalyse: Einführung, Selection- und Mergesort

A5.1 Laufzeitanalyse Allgemein

A5.2 Beispiel: Selectionsort

A5.3 Exkurs: Logarithmus

A5.4 Beispiel: Mergesort

A5.5 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 2 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 3 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 4 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

I Wäre schön: Formel, die für konkrete Eingabe berechnet,
wie lange das Programm läuft.

I exakte Laufzeitprognose schwierig, da zu viele Einflüsse:
I Geschwindigkeit und Architektur des Computers
I Programmiersprache
I Compilerversion
I aktuelle Auslastung (was sonst noch läuft)
I Cacheverhalten

Wir können und wollen das nicht alles in die Formel aufnehmen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 5 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 1

Zähle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

I Idealerweise: eine Zeile Maschinencode oder – noch präziser –
ein Prozessorzyklus

I Stattdessen: Anweisungen, die konstante Zeit benötigen
I konstante Zeit: Laufzeit unabhängig von Eingabe
I ignoriere Laufzeitunterschiede verschiedener Anweisungen
I z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
I grob: Operation = eine Zeile Code
I aber: auch beachten, was dahinter steht

z.B. Schritte innerhalb einer aufgerufenen Funktion

Wichtig: Laufzeit ungefähr proportional zu Anzahl Operationen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 6 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schätze ab statt genau zu zählen!

I Meistens Abschätzung nach oben (
”
obere Schranke“)

Wie viele Schritte braucht das Programm höchstens?

I Manchmal auch Abschätzung nach unten (
”
untere Schranke“)

Wie viele Schritte werden mindestens ausgeführt?

”
Laufzeit“ für Abschätzung der Anzahl ausgeführter Operationen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 7 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 3

Abschätzung nur abhängig von Eingabegrösse

I T (n): Laufzeit bei Eingabe der Grösse n
I Bei adaptiven Verfahren unterscheiden wir

I Beste Laufzeit (best case)
Laufzeit bei günstigstmöglicher Eingabe

I Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestmöglicher Eingabe

I Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit über alle Eingaben der Grösse n

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 8 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

I Identifiziere grundlegende Operationen der Algorithmenklasse
z.B. für vergleichsbasierte Sortierverfahren
I Vergleich von Schlüsselpaaren
I Tausch zweier Elemente oder Bewegung eines Elementes

I Schätze Anzahl dieser Operationen ab.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 9 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Beispiel aus C++-Referenz

http://www.cplusplus.com/reference/algorithm/sort/

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 10 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 11 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 12 / 35

http://www.cplusplus.com/reference/algorithm/sort/


A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse I

Wir zeigen: T (n) ≤ c ′ · n2 für n ≥ 1 und irgendeine Konstante c ′

I Äussere Schleife (3-10) und innere Schleife (6-8)
I Anzahl Operationen für jede Iteration der äusseren Schleife:

I Konstante a für Anzahl Operationen in Zeilen 7 und 8
I Konstante b für Anzahl Operationen in Zeilen 5 und 10

i # Operationen
0 a(n − 1) + b
1 a(n − 2) + b

. . .
n-2 a · 1 + b

I Insgesamt: T (n) =
∑n−2

i=0 (a(n − (i + 1)) + b)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 13 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse II

T (n) =
∑n−2

i=0
(a(n − (i + 1)) + b)

=
∑n−1

i=1
(a(n − i) + b)

= a
∑n−1

i=1
(n − i) + b(n − 1)

= 0.5a(n − 1)n + b(n − 1)

≤ 0.5an2 + b(n − 1)

≤ 0.5an2 + b(n − 1)n

≤ 0.5an2 + bn2

= (0.5a + b)n2

⇒ mit c ′ = (0.5a + b) gilt für n ≥ 1, dass T (n) ≤ c ′ · n2

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 14 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse III

Zu grosszügig abgeschätzt?

Wir zeigen für n ≥ 2: T (n) ≥ c · n2 für irgendeine Konstante c

T (n) = · · · = 0.5a(n − 1)n + b(n − 1)

≥ 0.5a(n − 1)n

≥ 0.25an2 (n − 1 ≥ 0.5n für n ≥ 2)

⇒ mit c = 0.25a gilt für n ≥ 2, dass T (n) ≥ c · n2

Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c > 0, c ′ > 0, n0 > 0, so dass für n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 15 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?

I Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

I Bei 1 Tsd. Elementen warten wir
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 Sekunden.

I Bei 10 Tsd. Elementen 10−8 · (104)2 = 1 Sekunde

I Bei 100 Tsd. Elementen 10−8 · (105)2 = 100 Sekunden

I Bei 1 Mio. Elementen 10−8 · (106)2 Sekunden = 2.77 Stunden

I Bei 1 Mrd. Elementen 10−8 · (109)2 Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind

”
nur“ 4 GB.

Quadratische Laufzeit problematisch für grosse Eingaben

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 16 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort mit Kostenmodell

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

→ n-1 mal Tausch zweier Elemente (
”
linear“)

→ 0.5(n-1)n Schlüsselvergleiche (
”
quadratisch“)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 17 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

A5.3 Exkurs: Logarithmus

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 18 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

I In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

I Dies ist bei der Analyse von Laufzeiten oft der Fall.

I Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

logb x = y gdw. by = x .

I Beispiele: log2 8 = 3, da 23 = 8
Beispiele: log3 81 = 4, da 34 = 81

I logb a intuitiv (wenn das glatt aufgeht):

”
Wie oft muss man a durch b teilen bis man bei 1 ist?“

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 19 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Illustration

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 20 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(ax)y = axy = (ay )x und axay = ax+y :

Produktregel logb(xy) = logb x + logb y
Potenzrechnung logb(x r ) = r logb x

Basisumrechnung logb x = loga x/ loga b
Summenregel logb(x + y) = logb x + logb(1 + y/x)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 21 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man öfters Ausdrücken der
Form alogb x . Wie bekommt man da den Logarithmus aus dem
Exponenten?

Beispiel: 5log2 x

Wir verwenden 5 = 2log2 5.

5log2 x = (2log2 5)
log2 x

= 2log2 5 log2 x

= 2log2 x log2 5

= (2log2 x)
log2 5

= x log2 5

≈ x2.32

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 22 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

A5.4 Beispiel: Mergesort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 23 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Wir analysieren Laufzeit für m := hi− lo + 1

c1

c2

c3

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 24 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt: Analyse

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

Für m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 25 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

Wir verwenden für die Abschätzung:
c1 Zeilen 2–4
c2 Zeilen 6 und 12
c3 Zeilen 8,9,11

Annahme: merge benötigt
Annahme: c4(hi-lo+1) Operationen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 26 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse I

Annahme: n = 2k für ein k ∈ N>0

Iterationen der äusseren Schleife (m für hi-lo+1):

I Iteration 1: n/2 mal innere Schleife mit Merge für m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

I Iteration 2: n/4 mal innere Schleife mit Merge für m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

I . . .

I Äussere Schleife endet nach letzter Iteration `.

I Iteration `: 1 mal innere Schleife mit Merge für m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Insgesamt T (n) ≤ c1 + `(c2 + c3n + c4n) ≤ `(c1 + c2 + c3 + c4)n

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 27 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse II

Wie gross ist `?

I In Iteration i ist für den Merge-Schritt m = 2i

I In Iteration ` hat Merge-Schritt m = 2` = n

I Da n = 2k ist ` = k = log2 n.

Mit c := c1 + c2 + c3 + c4 erhalten wir T (n) ≤ cn log2 n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 28 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse III

Was, wenn n keine Zweierpotenz, also 2k−1 < n < 2k?

I Trotzdem k Iterationen der äusseren Schleife.

I Innere Schleife verwendet nicht mehr Operationen.

I T (n) ≤ cnk = cn(blog2 nc+ 1) ≤ 2cn log2 n (für k > 2)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 29 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse IV

Ähnliche Abschätzung auch für untere Schranke möglich.
→ Übung

Theorem
Bottom-Up-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0 gilt
cn log2 n ≤ T (n) ≤ c ′n log2 n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 30 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Leicht überlineare Laufzeit

Leicht überlineare Laufzeit n log2 n:
→ doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?

I Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

I Bei 1 Tsd. Elementen warten wir
10−8 · 103 log2(103) ≈ 0.0001 Sekunden.

I Bei 10 Tsd. Elementen ≈ 0.0013 Sekunden

I Bei 100 Tsd. Elementen ≈ 0.017 Sekunden

I Bei 1 Mio. Elementen ≈ 0.2 Sekunden

I Bei 1 Mrd. Elementen ≈ 299 Sekunden

Laufzeit n log2 n nicht viel schlechter als lineare Laufzeit

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 31 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell I

Schlüsselvergleiche

I Werden nur in merge durchgeführt.

I Mergen zweier Teilfolgen der Länge m und n benötigt
bestenfalls min(n,m) und schlimmstenfalls n + m − 1
Vergleiche.

I Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt c, c ′ > 0, so dass Anzahl Vergleiche
zwischen cn und c ′n liegt.

→ Anzahl der zum Sortieren einer Sequenz notwendigen
Schlüsselvergleiche ist leicht überlinear in der Länge der
Sequenz (analog zu Laufzeitanalyse).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 32 / 35



A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell II

Elementbewegungen

I Werden nur in merge durchgeführt.

I 2n Bewegungen für Sequenz der Länge n.

I Insgesamt für Mergesort leicht überlinear
(analog zu Schlüsselvergleichen)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 33 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Zusammenfassung

A5.5 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 34 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Zusammenfassung

Zusammenfassung

I Bei der Laufzeitanalyse schätzen wir die Anzahl der
ausgeführten Operationen ab.
I Wir zählen nicht exakt.
I Wir ignorieren, wie lange eine Operation tatsächlich dauert.
I Hauptsache: Laufzeit ungefähr proportional zu Anzahl

Operationen.

I Selectionsort hat quadratische Laufzeit und benötigt linear
viele Vertauschungen und quadratisch viele
Schlüsselvergleiche.

I Mergesort hat leicht überlineare Laufzeit, Schlüsselvergleiche
und Elementbewegungen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 35 / 35


	Laufzeitanalyse Allgemein
	

	Beispiel: Selectionsort
	

	Exkurs: Logarithmus
	

	Beispiel: Mergesort
	

	Zusammenfassung
	


