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M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26. Februar 2020 2 / 35

A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

I Wäre schön: Formel, die für konkrete Eingabe berechnet,
wie lange das Programm läuft.

I exakte Laufzeitprognose schwierig, da zu viele Einflüsse:
I Geschwindigkeit und Architektur des Computers
I Programmiersprache
I Compilerversion
I aktuelle Auslastung (was sonst noch läuft)
I Cacheverhalten

Wir können und wollen das nicht alles in die Formel aufnehmen.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 1

Zähle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

I Idealerweise: eine Zeile Maschinencode oder – noch präziser –
ein Prozessorzyklus

I Stattdessen: Anweisungen, die konstante Zeit benötigen
I konstante Zeit: Laufzeit unabhängig von Eingabe
I ignoriere Laufzeitunterschiede verschiedener Anweisungen
I z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
I grob: Operation = eine Zeile Code
I aber: auch beachten, was dahinter steht

z.B. Schritte innerhalb einer aufgerufenen Funktion

Wichtig: Laufzeit ungefähr proportional zu Anzahl Operationen
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schätze ab statt genau zu zählen!

I Meistens Abschätzung nach oben (
”
obere Schranke“)

Wie viele Schritte braucht das Programm höchstens?

I Manchmal auch Abschätzung nach unten (
”
untere Schranke“)

Wie viele Schritte werden mindestens ausgeführt?

”
Laufzeit“ für Abschätzung der Anzahl ausgeführter Operationen
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 3

Abschätzung nur abhängig von Eingabegrösse

I T (n): Laufzeit bei Eingabe der Grösse n
I Bei adaptiven Verfahren unterscheiden wir

I Beste Laufzeit (best case)
Laufzeit bei günstigstmöglicher Eingabe

I Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestmöglicher Eingabe

I Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit über alle Eingaben der Grösse n
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

I Identifiziere grundlegende Operationen der Algorithmenklasse
z.B. für vergleichsbasierte Sortierverfahren
I Vergleich von Schlüsselpaaren
I Tausch zweier Elemente oder Bewegung eines Elementes

I Schätze Anzahl dieser Operationen ab.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Laufzeitanalyse Allgemein

Beispiel aus C++-Referenz

http://www.cplusplus.com/reference/algorithm/sort/
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse I

Wir zeigen: T (n) ≤ c ′ · n2 für n ≥ 1 und irgendeine Konstante c ′

I Äussere Schleife (3-10) und innere Schleife (6-8)
I Anzahl Operationen für jede Iteration der äusseren Schleife:

I Konstante a für Anzahl Operationen in Zeilen 7 und 8
I Konstante b für Anzahl Operationen in Zeilen 5 und 10

i # Operationen
0 a(n − 1) + b
1 a(n − 2) + b

. . .
n-2 a · 1 + b

I Insgesamt: T (n) =
∑n−2

i=0 (a(n − (i + 1)) + b)
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse II

T (n) =
∑n−2

i=0
(a(n − (i + 1)) + b)

=
∑n−1

i=1
(a(n − i) + b)

= a
∑n−1

i=1
(n − i) + b(n − 1)

= 0.5a(n − 1)n + b(n − 1)

≤ 0.5an2 + b(n − 1)

≤ 0.5an2 + b(n − 1)n

≤ 0.5an2 + bn2

= (0.5a + b)n2

⇒ mit c ′ = (0.5a + b) gilt für n ≥ 1, dass T (n) ≤ c ′ · n2
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse III

Zu grosszügig abgeschätzt?

Wir zeigen für n ≥ 2: T (n) ≥ c · n2 für irgendeine Konstante c

T (n) = · · · = 0.5a(n − 1)n + b(n − 1)

≥ 0.5a(n − 1)n

≥ 0.25an2 (n − 1 ≥ 0.5n für n ≥ 2)

⇒ mit c = 0.25a gilt für n ≥ 2, dass T (n) ≥ c · n2

Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c > 0, c ′ > 0, n0 > 0, so dass für n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?

I Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

I Bei 1 Tsd. Elementen warten wir
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 Sekunden.

I Bei 10 Tsd. Elementen 10−8 · (104)2 = 1 Sekunde

I Bei 100 Tsd. Elementen 10−8 · (105)2 = 100 Sekunden

I Bei 1 Mio. Elementen 10−8 · (106)2 Sekunden = 2.77 Stunden

I Bei 1 Mrd. Elementen 10−8 · (109)2 Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind

”
nur“ 4 GB.

Quadratische Laufzeit problematisch für grosse Eingaben
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort mit Kostenmodell

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

→ n-1 mal Tausch zweier Elemente (
”
linear“)

→ 0.5(n-1)n Schlüsselvergleiche (
”
quadratisch“)
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

A5.3 Exkurs: Logarithmus
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

I In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

I Dies ist bei der Analyse von Laufzeiten oft der Fall.

I Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

logb x = y gdw. by = x .

I Beispiele: log2 8 = 3, da 23 = 8
Beispiele: log3 81 = 4, da 34 = 81

I logb a intuitiv (wenn das glatt aufgeht):

”
Wie oft muss man a durch b teilen bis man bei 1 ist?“
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Illustration
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(ax)y = axy = (ay )x und axay = ax+y :

Produktregel logb(xy) = logb x + logb y
Potenzrechnung logb(x r ) = r logb x

Basisumrechnung logb x = loga x/ loga b
Summenregel logb(x + y) = logb x + logb(1 + y/x)
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man öfters Ausdrücken der
Form alogb x . Wie bekommt man da den Logarithmus aus dem
Exponenten?

Beispiel: 5log2 x

Wir verwenden 5 = 2log2 5.

5log2 x = (2log2 5)
log2 x

= 2log2 5 log2 x

= 2log2 x log2 5

= (2log2 x)
log2 5

= x log2 5

≈ x2.32
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

A5.4 Beispiel: Mergesort
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Wir analysieren Laufzeit für m := hi− lo + 1

c1

c2

c3
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt: Analyse

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

Für m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

Wir verwenden für die Abschätzung:
c1 Zeilen 2–4
c2 Zeilen 6 und 12
c3 Zeilen 8,9,11

Annahme: merge benötigt
Annahme: c4(hi-lo+1) Operationen.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse I

Annahme: n = 2k für ein k ∈ N>0

Iterationen der äusseren Schleife (m für hi-lo+1):

I Iteration 1: n/2 mal innere Schleife mit Merge für m = 2
c2 + n/2(c3 + 2c4) = c2 + 0.5c3n + c4n

I Iteration 2: n/4 mal innere Schleife mit Merge für m = 4
c2 + n/4(c3 + 4c4) = c2 + 0.25c3n + c4n

I . . .

I Äussere Schleife endet nach letzter Iteration `.

I Iteration `: 1 mal innere Schleife mit Merge für m = n
c2 + n/n(c3 + nc4) = c2 + c3 + c4n

Insgesamt T (n) ≤ c1 + `(c2 + c3n + c4n) ≤ `(c1 + c2 + c3 + c4)n
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse II

Wie gross ist `?

I In Iteration i ist für den Merge-Schritt m = 2i

I In Iteration ` hat Merge-Schritt m = 2` = n

I Da n = 2k ist ` = k = log2 n.

Mit c := c1 + c2 + c3 + c4 erhalten wir T (n) ≤ cn log2 n.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse III

Was, wenn n keine Zweierpotenz, also 2k−1 < n < 2k?

I Trotzdem k Iterationen der äusseren Schleife.

I Innere Schleife verwendet nicht mehr Operationen.

I T (n) ≤ cnk = cn(blog2 nc+ 1) ≤ 2cn log2 n (für k > 2)
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse IV

Ähnliche Abschätzung auch für untere Schranke möglich.
→ Übung

Theorem
Bottom-Up-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0 gilt
cn log2 n ≤ T (n) ≤ c ′n log2 n.
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Leicht überlineare Laufzeit

Leicht überlineare Laufzeit n log2 n:
→ doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?

I Annahme: c = 1, eine Operation dauert im Schnitt 10−8 Sek.

I Bei 1 Tsd. Elementen warten wir
10−8 · 103 log2(103) ≈ 0.0001 Sekunden.

I Bei 10 Tsd. Elementen ≈ 0.0013 Sekunden

I Bei 100 Tsd. Elementen ≈ 0.017 Sekunden

I Bei 1 Mio. Elementen ≈ 0.2 Sekunden

I Bei 1 Mrd. Elementen ≈ 299 Sekunden

Laufzeit n log2 n nicht viel schlechter als lineare Laufzeit
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell I

Schlüsselvergleiche

I Werden nur in merge durchgeführt.

I Mergen zweier Teilfolgen der Länge m und n benötigt
bestenfalls min(n,m) und schlimmstenfalls n + m − 1
Vergleiche.

I Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt c, c ′ > 0, so dass Anzahl Vergleiche
zwischen cn und c ′n liegt.

→ Anzahl der zum Sortieren einer Sequenz notwendigen
Schlüsselvergleiche ist leicht überlinear in der Länge der
Sequenz (analog zu Laufzeitanalyse).
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell II

Elementbewegungen

I Werden nur in merge durchgeführt.

I 2n Bewegungen für Sequenz der Länge n.

I Insgesamt für Mergesort leicht überlinear
(analog zu Schlüsselvergleichen)
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Zusammenfassung

A5.5 Zusammenfassung
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A5. Laufzeitanalyse: Einführung, Selection- und Mergesort Zusammenfassung

Zusammenfassung

I Bei der Laufzeitanalyse schätzen wir die Anzahl der
ausgeführten Operationen ab.
I Wir zählen nicht exakt.
I Wir ignorieren, wie lange eine Operation tatsächlich dauert.
I Hauptsache: Laufzeit ungefähr proportional zu Anzahl

Operationen.

I Selectionsort hat quadratische Laufzeit und benötigt linear
viele Vertauschungen und quadratisch viele
Schlüsselvergleiche.

I Mergesort hat leicht überlineare Laufzeit, Schlüsselvergleiche
und Elementbewegungen.
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