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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Waire schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.
P exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

» Geschwindigkeit und Architektur des Computers
» Programmiersprache

» Compilerversion

> aktuelle Auslastung (was sonst noch |duft)
> Cacheverhalten

Wir konnen und wollen das nicht alles in die Formel aufnehmen.
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Laufzeitanalyse: Vereinfachung 1

Z3hle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

P Idealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen
P konstante Zeit: Laufzeit unabhangig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code
aber: auch beachten, was dahinter steht
z.B. Schritte innerhalb einer aufgerufenen Funktion

vvyvyy

Wichtig: Laufzeit ungefahr proportional zu Anzahl Operationen
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Laufzeitanalyse: Vereinfachung 2

Schatze ab statt genau zu zahlen!

» Meistens Abschdtzung nach oben (,,obere Schranke")
Wie viele Schritte braucht das Programm héchstens?

» Manchmal auch Abschatzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit" fiir Abschitzung der Anzahl ausgefiihrter Operationen
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Laufzeitanalyse: Vereinfachung 3

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grésse n
> Bei adaptiven Verfahren unterscheiden wir
> Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestmoglicher Eingabe
» Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grosse n
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Kostenmodelle

Auch: Analyse mit Kostenmodell
> Identifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren
> Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

» Schitze Anzahl dieser Operationen ab.
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Laufzeitanalyse Allgemein

Beispiel aus C++-Referenz

M. Liithi, G. Réger (Universitit Basel)

function template
std:SOIrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first, last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and /ast: Performs approximately N*1og,(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/
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Beispiel: Selectionsort

Selectionsort: Algorithmus

M. Liithi, G. Réger (Universitit Basel)

def selection_sort(array):
n = len(array)

for i in range(n - 1): # ¢ =20, ..., n-2
# find index of minimum element at positions %, ..., n-1
min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1

if array[j] < array[min_index]:
min_index = j
# swap element at position 7 with minimum element
array[il, array[min_index] = array[min_index], array[il
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante ¢’
> Aussere Schleife (3-10) und innere Schleife (6-8)

» Anzahl Operationen fiir jede Iteration der dusseren Schleife:

> Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
> Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen
0|a(n—1)+b
1lan—2)+b

n2|a-1+b
> Insgesamt: T(n) = Z,’-:Oz(a(n —(i+1))+b)
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Selectionsort: Analyse Il

T(n) = Z:;(a(n —(i+1))+b)
=" Na(n—i) + b)
= aZZJ(n — i)+ b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* + b(n — 1)
< 0.5an* + b(n — 1)n
< 0.5an? + bn?
= (0.5a+ b)n?

= mit ¢/ = (0.5a + b) gilt fiir n > 1, dass T(n) < ¢’ - n?
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A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante ¢

T(n)=---=05a(n—1)n+ b(n—1)
> 0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?

Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c>0,c >0,n9 >0, so dass fiir n > ny: cn®> < T(n) < c'n?.
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Selectionsort: Analyse IV

Quadratische Laufzeit:

doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 1028 Sek.
» Bei 1 Tsd. Elementen warten wir

1078 . (10%)2 = 1078 . 10° = 1072 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 108 - (10%)? = 1 Sekunde

Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden

Bei 1 Mio. Elementen 1078 - (10°)? Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,,nur" 4 GB.

vvyyvyy

Quadratische Laufzeit problematisch fiir grosse Eingaben
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort mit Kostenmodell

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =20, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = ¢+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at postition © with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[il

— n-1 mal Tausch zweier Elemente (,,linear")
— 0.5(n-1)n Schlisselvergleiche (,,quadratisch")
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Ab5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

» In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

» Dies ist bei der Analyse von Laufzeiten oft der Fall.

» Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

log, x =y gdw. b’ = x.
> Beispiele: log,8 =3, da 23 =8
Beispiele: log; 81 = 4, da 3* = 81

» log, a intuitiv (wenn das glatt aufgeht):
., Wie oft muss man a durch b teilen bis man bei 1 ist?"
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Logarithmus: lllustration

Exkurs: Logarithmus

l— logoz — log.x — logpz

logg s
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(&) =av =(a) und a¥a¥ = a*:

Produktregel log,(xy) = logp x + log, y
Potenzrechnung log,(x") = rlogy x
Basisumrechnung log, x = log, x/ log, b
Summenregel logy(x + y) = logy x + log,(1 + y/x)
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Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°85*. Wie bekommt man da den Logarithmus aus dem
Exponenten?

Beispiel: 5082
Wir verwenden 5 = 2/°825,
5Iog2 X _ (2Iog2 5)|og2 X

— 2Iog2 5log, x

— 2|og2 xlog, 5
(2|og2 X)lOgZ 5
Xlog2 5

~ X2.32
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Ab5.4 Beispiel: Mergesort
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Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):
2 i = 1lo
c1| 3 j =mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,h%
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp [k] = array[i]
7 i+=1
co| 8 else:
9 tmp[k] = array[j]
10 j =1
11 for k in range(lo, hi + 1): # k = lo,...,h%
cs ‘12 array[k] = tmp[k]

Wir analysieren Laufzeit fiir m :=hi —lo+1
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt: Analyse

T(m)=ca +com+cam

> (c2+c3)m
Fir m> 1:
T(m)=c+ cm+cm
<cm-+com+czm
::(c1 + +-C3)In
Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.
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Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge(array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1  Zeilen 2-4 Annahme: merge benétigt
co  Zeilen 6 und 12 cs(hi-lo+1) Operationen.
c3 Zeilen 8,9,11

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 26 / 35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Nog

lterationen der dusseren Schleife (m fiir hi-lo+1):
» |teration 1: n/2 mal innere Schleife mit Merge fiir m = 2
¢+ n/2(c3 +2cs) = ca +0.5¢c3n+ can
» lteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
e+ n/d(c3+4c) = c+0.25¢c3n+ can

Aussere Schleife endet nach letzter Iteration /.

A\

» Iteration /: 1 mal innere Schleife mit Merge fiir m=n
¢+ n/n(c3 + ncy) = o+ ¢34+ can

Insgesamt T(n) < c1 +4(ca + czn+ can) < l(ci + ¢+ 3+ ca)n
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Bottom-Up-Mergesort: Analyse Il

Wie gross ist £7
» In Iteration i ist fiir den Merge-Schritt m = 2/
> In Iteration £ hat Merge-Schritt m = 2¢ = n
» Dan=2kist £ = k = log, n.

Mit ¢ := ¢1 + & + 3 + ¢4 erhalten wir T(n) < cnlog, n.
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse Il Bottom-Up-Mergesort: Analyse IV

Ahnliche Abschitzung auch fiir untere Schranke maglich.

Was, wenn n keine Zweierpotenz, also 2k~1 < n < 2k? — Ubung
» Trotzdem k lterationen der dusseren Schleife.
» Innere Schleife verwendet nicht mehr Operationen. Theorem
> T(n) < cnk = cn(|log, n| + 1) < 2cnlog, n (fiir k > 2) Bottom-Up-Mergesort hat leicht liberlineare Laufzeit, d.h.

es gibt Konstanten ¢, c’, ng > 0, so dass fiir alle n > nq gilt
cnlogy n < T(n) < c’nlog, n.
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Leicht {iberlineare Laufzeit Mergesort mit Kostenmodell |

Leicht iiberlineare Laufzeit nlog, n:

— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit Schliisselvergleiche
Was bedeutet das in der Praxis? » Werden nur in merge durchgefiihrt.
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 108 Sek. > Mergen zweier Teilfolgen der Lange m und n bendtigt

bestenfalls min(n, m) und schlimmstenfalls n + m —1
» Bei 1 Tsd. Elementen warten wir ( ’ ) T

1078 - 10° log,(10%) ~ 0.0001 Sekunden. Vergleiche.
> Bei zwei etwa gleich langen Teilfolgen sind das linear viele

> Bei 10 Tsd. El ten =~ 0.0013 Sekund . . .
. > ementen erunden Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
> Bei 100 Tsd. Elementen = 0.017 Sekunden zwischen cn und ¢’n liegt.
> Bei 1 Mio. Elementen ~ 0.2 Sekunden — Anzahl der zum Sortieren einer Sequenz notwendigen
> Bei 1 Mrd. Elementen = 299 Sekunden Schliisselvergleiche ist leicht iiberlinear in der Lange der

Sequenz (analog zu Laufzeitanalyse).
Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell |

Elementbewegungen
» Werden nur in merge durchgefiihrt.
> 2n Bewegungen fiir Sequenz der Lange n.

» Insgesamt fiir Mergesort leicht iiberlinear
(analog zu Schliisselvergleichen)
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A5.5 Zusammenfassung
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A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Zusammenfassung

Zusammenfassung

» Bei der Laufzeitanalyse schatzen wir die Anzahl der
ausgefiihrten Operationen ab.

» Wir zdhlen nicht exakt.
> Wir ignorieren, wie lange eine Operation tatsachlich dauert.
» Hauptsache: Laufzeit ungefdhr proportional zu Anzahl
Operationen.
> Selectionsort hat quadratische Laufzeit und benétigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

» Mergesort hat leicht iiberlineare Laufzeit, Schliisselvergleiche
und Elementbewegungen.
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