Algorithmen und Datenstrukturen
Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Marcel Liithi and Gabriele Roger
Universitat Basel

26. Februar 2020

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 1/35

Algorithmen und Datenstrukturen
26. Februar 2020 — Ab. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

A5.1 Laufzeitanalyse Allgemein
A5.2 Beispiel: Selectionsort
Ab.3 Exkurs: Logarithmus
Ab5.4 Beispiel: Mergesort

A5.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020

2/35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 26. Februar 2020 3/35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Inhalt dieser Veranstaltung

—| Sortieren |
| Fundamentale
Datenstrukturen
s B
—‘ Graphen |
—| Strings |
| Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 4 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Ware schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.
> exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

P Geschwindigkeit und Architektur des Computers
» Programmiersprache

» Compilerversion

> aktuelle Auslastung (was sonst noch liuft)

» Cacheverhalten

Wir kénnen und wollen das nicht alles in die Formel aufnehmen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 5 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 1

Zahle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

> |dealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen

» konstante Zeit: Laufzeit unabhingig von Eingabe
> ignoriere Laufzeitunterschiede verschiedener Anweisungen
> z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
> grob: Operation = eine Zeile Code
» aber: auch beachten, was dahinter steht

z.B. Schritte innerhalb einer aufgerufenen Funktion

Wichtig: Laufzeit ungefdhr proportional zu Anzahl Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020

6 /

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schéatze ab statt genau zu zdhlen!

» Meistens Abschatzung nach oben (, obere Schranke")
Wie viele Schritte braucht das Programm hochstens?

» Manchmal auch Abschitzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit” fiir Abschdtzung der Anzahl ausgefiihrter Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 7 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Laufzeitanalyse: Vereinfachung 3

Laufzeitanalyse Allgemein

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grosse n
» Bei adaptiven Verfahren unterscheiden wir
> Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestméglicher Eingabe
> Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grésse n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 8 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

» |dentifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren

> Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

» Schitze Anzahl dieser Operationen ab.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 9 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Beispiel aus C+-+-Referenz

function template
std:SOrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and /ast: Performs approximately N*1og;(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 10 / 35

http://www.cplusplus.com/reference/algorithm/sort/

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 26. Februar 2020 11 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort: Algorithmus

Beispiel: Selectionsort

def selection_sort(array):
n = len(array)

for i in range(n - 1): # 4 =0, ..., n-2
find index of minimum element at positions 1, , n-1
min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 12 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ n? fiir n > 1 und irgendeine Konstante ¢’
» Aussere Schleife (3-10) und innere Schleife (6-8)

» Anzahl Operationen fiir jede Iteration der dusseren Schleife:

> Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
» Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen

0|a(n—1)+b
1]aln—2)+b
n-2|a-1+b

> Insgesamt: T(n) = Y7 2(a(n— (i +1)) + b)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 13 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

T(n) =3 “(a(n—(i+1)) +b)
=" (a(n— i)+ b)
= 32:11(n — i)+ b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* 4 b(n — 1)
< 0.5an* + b(n —1)n
< 0.5an? + bn?
= (0.5a + b)n?

= mit ¢/ = (0.5a+ b) gilt fiir n > 1, dass T(n) < ¢’ - n?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 14 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
>0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?
Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten

c>0,¢ >0,np >0, so dass fiir n > ng: cn®> < T(n) < c’n?.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 15 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:

doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 108 Sek.
> Bei 1 Tsd. Elementen warten wir

1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 1078 - (10*)2 = 1 Sekunde

Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden

Bei 1 Mio. Elementen 1078 - (10°)2 Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,nur* 4 GB.

vvyYyy

Quadratische Laufzeit problematisch fiir grosse Eingaben

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 16 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):

n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
find index of minimum element at positions %, ..., n-1

min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")
— 0.5(n-1)n Schliisselvergleiche (,,quadratisch")

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020

Beispiel: Selectionsort

17 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

A5.3 Exkurs: Logarithmus

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 26. Februar 2020 18 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

» In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

» Dies ist bei der Analyse von Laufzeiten oft der Fall.

» Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

logy, x = y gdw. b = x.

> Beispiele: log, 8 = 3, da 23 =8
Beispiele: log; 81 = 4, da 3* = 81
» log, a intuitiv (wenn das glatt aufgeht):
., Wie oft muss man a durch b teilen bis man bei 1 ist?"

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 19 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Illustration

l— logsx — log.> — loggz — loggsx

5 ‘ 1 ! ! ! ! ! ‘ ! 1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 20 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
() = a¥ = (a) und a*a¥ = V-

Produktregel logy(xy) = logy, x + logy y
Potenzrechnung log,(x") = rlog, x

Basisumrechnung log, x = log, x/ log, b
Summenregel log,(x + y) = log, x + log,(1 + y/x)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 21 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°8*_ Wie bekommt man da den Logarithmus aus dem

Exponenten?

Beispiel: 5'982%
Wir verwenden 5 = 29825
5Iog2x _ (2Iog2 5)|0g2x
_ 2Iog25log2x
— 2Iog2xlog25
_ (2Iog2 x)|°g2 5
_ Xlog2 5

~ X2‘32

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020

Exkurs: Logarithmus

22 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Ab5.4 Beispiel: Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 26. Februar 2020 23 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt

1

(&)

3 |

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):
i=1lo
j = mid + 1
for k in range(lo, hi + 1): # k = lo,...,ht
if j > hi or (i <= mid and array[i] <= array[jl):
tmp[k] = arrayl[i]

i+=1
else:

tmp [k] = arrayl[j]

j+=1

for k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[k]

Wir analysieren Laufzeit fiir m :=hi—lo+1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 24 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Merge-Schritt: Analyse

Beispiel: Mergesort

T(m) =cC +cm-+c3m

> (2 +c)m
Fir m> 1:

T(m) =cCc+com+c3m
<cm+cm+4 cam
=(a+c+a)m

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 25 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1 Zeilen 2—4 Annahme: merge bendtigt

co Zeilen 6 und 12 ca(hi-lo+1) Operationen.
c3 Zeilen 8,9,11

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 26 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € N5

Iterationen der dusseren Schleife (m fiir hi-lo+1):
» lteration 1: n/2 mal innere Schleife mit Merge fiir m = 2
2+ n/2(c3 4+ 2cs) = ca + 0.5¢c3n + can
» lteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 + 4cy) = o + 0.25¢c3n + can

Aussere Schleife endet nach letzter Iteration /.

v

> |teration ¢: 1 mal innere Schleife mit Merge fiir m = n
e+ n/n(cs+ ncy) =+ c3+ can

Insgesamt T(n) < ¢+ ¥(co + csn+ can) < l(c1 + o + 3+ ca)n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 27 / 35

Beispiel: Mergesort

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Bottom-Up-Mergesort: Analyse |l

Wie gross ist £7
» In Iteration i ist fiir den Merge-Schritt m = 2/

> In lteration ¢ hat Merge-Schritt m =2¢ =n
» Dan=2Kist { = k = log, n.

Mit ¢ := ¢1 + ¢ + ¢3 + ¢4 erhalten wir T(n) < cnlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020

28 /

35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse Il

Was, wenn n keine Zweierpotenz, also 2k=1 < n < 2k?
» Trotzdem k Iterationen der dusseren Schleife.
» Innere Schleife verwendet nicht mehr Operationen.
» T(n) < cnk = cn(|logy n] +1) < 2cnlog, n (fiirr k > 2)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 29 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |V

Ahn__liche Abschatzung auch fiir untere Schranke mdoglich.
— Ubung

Theorem

Bottom-Up-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ng gilt
cnlogy, n < T(n) < c’nlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 30/ 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 10~8 Sek.

» Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
Bei 100 Tsd. Elementen = 0.017 Sekunden
Bei 1 Mio. Elementen = 0.2 Sekunden
Bei 1 Mrd. Elementen = 299 Sekunden

vV v v Y

Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 31

/35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Mergesort mit Kostenmodell |

Schliisselvergleiche

» Werden nur in merge durchgefiihrt.

> Mergen zweier Teilfolgen der Lange m und n bendtigt
bestenfalls min(n, m) und schlimmstenfalls n+ m — 1
Vergleiche.

> Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
zwischen cn und ¢’n liegt.

— Anzahl der zum Sortieren einer Sequenz notwendigen
Schliisselvergleiche ist leicht tiberlinear in der Lange der
Sequenz (analog zu Laufzeitanalyse).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020

32

Beispiel: Mergesort

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Mergesort mit Kostenmodell |l

Elementbewegungen

» Werden nur in merge durchgefiihrt.

> 2n Bewegungen fiir Sequenz der Lange n.

» Insgesamt fiir Mergesort leicht liberlinear
(analog zu Schliisselvergleichen)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Beispiel: Mergesort

26. Februar 2020

33 /

35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Zusammenfassung

A5.5 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 26. Februar 2020 34 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Zusammenfassung

Zusammenfassung

> Bei der Laufzeitanalyse schatzen wir die Anzahl der
ausgefiihrten Operationen ab.

» Wir zdhlen nicht exakt.
» Wir ignorieren, wie lange eine Operation tatsichlich dauert.
» Hauptsache: Laufzeit ungefahr proportional zu Anzahl
Operationen.
» Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

» Mergesort hat leicht liberlineare Laufzeit, Schliisselvergleiche
und Elementbewegungen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26. Februar 2020 35 / 35

	Laufzeitanalyse Allgemein
	

	Beispiel: Selectionsort
	

	Exkurs: Logarithmus
	

	Beispiel: Mergesort
	

	Zusammenfassung
	

