Theory of Computer Science
F2. WHILE-Computability

Gabriele Roger
University of Basel

May 20, 2019

Introduction

Introduction
o] Yo}

Course Overview

—| Background |

—| Logic |

—| Automata Theory |

LOOP- tabilit
% Turing Computability| Sonip e |

i |

Complexity

GOTO-computability |

Introduction \a.«HILE H grams N \ O0P .\9 g \mmvmw

ooe

LOOP, WHILE and GOTO Programs Basic Concepts

Reminder:
m LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages
m use finitely many variables from the set {xp, x1, x2, ... }
that can take on values in Ny

m differ from each other in the allowed ‘“statements”

WHILE Programs
00000

WHILE Programs

Introduction WHILE Programs
0®0000

LOOP WHILE Turing

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

® X; := Xxj + c is a WHILE program
for every i,j, c € Ny (addition)
® x; = x; — c is a WHILE program
for every i, j, c € Ny (modified subtraction)
m If P; and P, are WHILE programs,
then so is P;;P, (composition)
m If P is a WHILE program, then so is
WHILE x; #£ 0 DO P END for every i € Ny (WHILE loop)

German: WHILE-Programm, WHILE-Schleife

Introduction WHILE Programs
00000

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined

exactly as for LOOP programs.

effect of WHILE x; ## 0 DO P END:
m If x; holds the value 0, program execution finishes.
m Otherwise execute P.

m Repeat these steps until execution finishes
(potentially infinitely often).

WHILE Programs
000e00

WHILE-Computable Functions

Definition (WHILE-Computable)

A function f : N’a —p Np is called WHILE-computable
if a WHILE program that computes f exists.

German: f ist WHILE-berechenbar

Ilm bduction WHILE Programs

000080

WHILE-Program: Example

WHILE x; # 0 DO
X1 = X1 — X2,
X0 :=xg+1
END

What function does this program compute?

WHILE Programs
O0000e

Questions

o

~

Questions?

WHILE vs. LOOP
©000000000000

WHILE vs. LOOP

WHILE vs. LOOP
0800000000000

WHILE-Computability vs. LOOP-Computability

Every LOOP-computable function is WHILE-computable.
The converse is not true.

WHILE programs are therefore strictly more powerful
than LOOP programs.

German: echt machtiger

Intr bduction / s WHILE vs. LOOP \\HILE TmmH

O0@0000000000

WHILE- Computablllty vs. LOOP- Computablllty

Proof
Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent
WHILE program, i.e., one computing the same function.

To do so, replace each occurrence of LOOP x; DO P END with

5§ = 5%
WHILE x; # 0 DO
xj = x;— 1,
P
END

where X; is a fresh variable.

Intr >duction WHILE Programs WHILE vs. LOOP WHILE vs Tumm Summary

O00@000000000

WHILE- Computablllty vs. LOOP- Computablllty

Proof (continued)

Part 2: Not all WHILE-computable functions are
LOOP-computable.

The WHILE program

x1 = 1;

WHILE x; # 0 DO

x1:=1

END
computes the function € : Ng —, Ny that is undefined everywhere.
Q is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total). O]

<

Introduction N ms WHILE vs. LOOP
0000®00000000

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

m x; = x; for i,j € Ny
mx;:=cfori,ceNy

Xi = xj 4+ x; for i,j, k € Ng

IF x; 20 THEN P END for i € Ny
IF x; = ¢ THEN P END for i,c € Ny

|
|
|
m Additional syntactic sugar from the exercises

WHILE vs. LOOP
0000080000000

Questions

o

~

Questions?

W

Introduction

LOOP vs.

E Programs WHILE vs. LOOP

0000008000000

WHILE: Is There a Practical Difference?

m We have shown that WHILE programs
are strictly more powerful than LOOP programs.

m The example we used is not very relevant in practice
because our argument only relied on the fact
that LOOP-computable functions are always total.

m To terminate for every input is not much of a problem
in practice. (Quite the opposite.)

m Are there any total functions that are WHILE-computable,
but not LOOP-computable?

Introduction WHILE Programs WHILE vs. LOOP
00 0000000800000

Ackermann Function: History

m David Hilbert conjectured that all computable
total functions are primitive recursive (1926).

m Wilhelm Ackermann refuted the conjecture
by supplying a counterexample (1928).

m The counterexample was simplified by Rézsa Péter (1935).

~ here: simplified version

Summar

Introduction WHILE Programs WHILE vs. LOOP Vs g Summar
0000000080000

Ackermann Function

Definition (Ackermann function)

The Ackermann function a: Ng — Ny is defined as follows:

a0,y)=y+1 forally >0
a(x,0) = a(x — 1,1) for all x > 0
a(x,y)=a(x—1,a(x,y — 1)) for all x,y >0

German: Ackermannfunktion

Note: the recursion in the definition is bounded,
so this defines a total function.

WHILE vs. LOOP
0000000008000

Table of Values

y=0 y=1 y =2 y=3 y=k

a(l,y) 2 3 4 5 k42

a(3,y) 5 13 29 61 2k+3 _3

WHILE vs. LOOP
0000000000800

Computability of the Ackermann Function

The Ackermann function is WHILE-computable,
but not LOOP-computable.

(Without proof.)

Introduction N ograms WHILE vs. LOOP
o o 0000000000080

Computability of the Ackermann Function: Proof ldea

proof idea:
m WHILE-computability:

m show how WHILE programs can simulate a stack
m dual recursion by using a stack
~~ WHILE program is easy to specify
m no LOOP-computability:
m show that there is a number k for every LOOP program
such that the computed function value is smaller than a(k, n),
if nis the largest input value
m proof by structural induction; use k = “program length”
~~ Ackermann function grows faster
than every LOOP-computable function

WHILE vs. LOOP
000000000000e

Questions

o

~

Questions?

WHILE vs. Turing
00000000

WHILE vs. Turing

WHILE vs. Turing
00000000

WHILE-Computability vs. Turing-Computability

Every WHILE-computable function is Turing-computable. I

(We will discuss the converse statement later.)

Intudun_tum / ograms \\H\LE vs L()(’I» WHILE vs. Turing Summary

[e]e] lele]elele)

WHILE-Computability vs. Turlng Computablllty

Proof sketch

Given any WHILE program, we construct an equivalent
deterministic Turing machine.

Let x1,...,xx be the input variables of the WHILE program,
and let xg, ..., Xy be all used variables.

General ideas:
m The DTM simulates the individual execution steps
of the WHILE program.

m Before and after each WHILE program step
the tape contains the word bin(ng)#bin(ny)# ... #bin(npy,),
where n; is the value of WHILE program variable x;.

m It is enough to simulate “minimalistic’ WHILE programs
(xi == x; + 1, x; := x; — 1, composition, WHILE loop).

WHILE vs. Turing
000@0000

Introduction N ograms

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

The DTM consists of three sequential parts:
m initialization:
m Write O# in front of the used part of the tape.
m (m — k) times, write #0 behind the used part of the tape.

m execution:
Simulate the WHILE program (see next slide).
m clean-up:
m Replace all symbols starting from the first # with [J,
then move to the first symbol that is not [.

Intr >duction / >rograms \‘ H\LE vs L()()I» WHILE vs. Turing Summary

[e]e]e]e] lelele)

WHILE- Computablllty VS. Turlng Computablllty

Proof sketch (continued).

Simulation of x; := x; + 1:

@ Move left until a blank is reached,
then one step to the right.

@ (i + 1) times: move right until # or O is reached.
© Move one step to the left.
~> We are now on the last digit of the encoding of x;.

Q Execute DTM for increment by 1. (Most difficult part:
“make room” if the number of binary digits increases.)

hm >duction / s A \ Li)UF WHILE vs. Turing

[e]e]e]e]e] lele)

WHILE-Computability vs. Turlng Computablllty

Proof sketch (continued).

Simulation of x; := x; — 1:
@ Move to the last digit of x; (see previous slide).
@ Test if the digit is a 0 and the symbol
to its left is # or L. If so: done.

© Otherwise: execute DTM for decrement by 1.
(Most difficult part: “contract” the tape if the decrement
reduces the number of digits.)

Ilm duction N grams W WHILE vs. Turing

[e]e]e]e]e]e] Jo)

WHILE-Computability vs. Turlng Computablllty

Proof sketch (continued).
Simulation of Py; Ps:
@ Recursively build DTMs M; for Py and M, for P».

@ Combine these to a DTM for Py; P>
by letting all transitions to end states of M;
instead go to the start state of M.

Intr >duction N >rograms ’ WHILE vs. Turing Summary

0000000

WHILE- Computablllty VS. Turlng Computablllty

Proof sketch (continued).
Simulation of WHILE x; £ 0 DO P END:
@ Recursively build DTM M for P.

@ Build a DTM M’ for WHILE x; # 0 DO P END
that works as follows:
@ Move to the last digit of x;.
@ Test if that symbol is 0 and the symbol to its left is # or [J.
If so: done.
©® Otherwise execute M, where all transitions to end states of M
are replaced by transitions to the start state of M’.

Ol

4

[Je]

Summary

Introduction N r 00 N Summary

oe

Summary

m another new model of computation: WHILE programs

m strictly more powerful than LOOP programs.
m WHILE-, but not LOOP-computable functions:

m simple example: function that is undefined everywhere
m more interesting example (total function):

Ackermann function, which grows too fast

to be LOOP-computable

m Turing machines are at least as powerful as WHILE programs.

	Introduction
	

	WHILE Programs
	

	WHILE vs. LOOP
	

	WHILE vs. Turing
	

	Summary
	

