

Theory of Computer Science

F2. WHILE-Computability

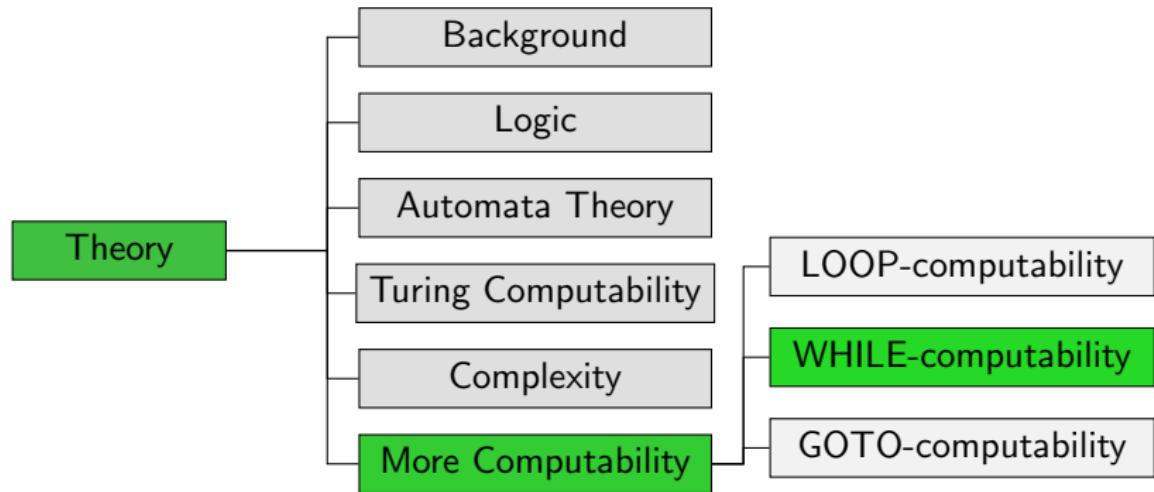
Gabriele Röger

University of Basel

May 20, 2019

Introduction

Course Overview



LOOP, WHILE and GOTO Programs: Basic Concepts

Reminder:

- LOOP, WHILE and GOTO programs are structured like programs in (simple) “traditional” programming languages
- use finitely many variables from the set $\{x_0, x_1, x_2, \dots\}$ that can take on values in \mathbb{N}_0
- differ from each other in the allowed “statements”

WHILE Programs

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

- $x_i := x_j + c$ is a WHILE program
for every $i, j, c \in \mathbb{N}_0$ (addition)
- $x_i := x_j - c$ is a WHILE program
for every $i, j, c \in \mathbb{N}_0$ (modified subtraction)
- If P_1 and P_2 are WHILE programs,
then so is $P_1; P_2$ (composition)
- If P is a WHILE program, then so is
 $\text{WHILE } x_i \neq 0 \text{ DO } P \text{ END}$ for every $i \in \mathbb{N}_0$ (WHILE loop)

German: WHILE-Programm, WHILE-Schleife

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined exactly as for LOOP programs.

effect of `WHILE $x_i \neq 0$ DO P END`:

- If x_i holds the value 0, program execution finishes.
- Otherwise execute P .
- Repeat these steps until execution finishes (potentially infinitely often).

WHILE-Computable Functions

Definition (WHILE-Computable)

A function $f : \mathbb{N}_0^k \rightarrow_p \mathbb{N}_0$ is called **WHILE-computable** if a WHILE program that computes f exists.

German: f ist WHILE-berechenbar

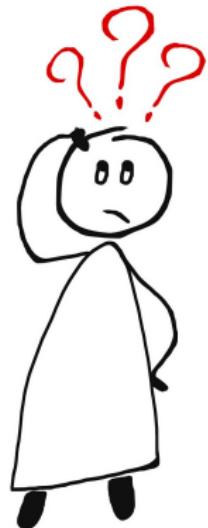
WHILE-Program: Example

Example

```
WHILE  $x_1 \neq 0$  DO  
   $x_1 := x_1 - x_2;$   
   $x_0 := x_0 + 1$   
END
```

What function does this program compute?

Questions



Questions?

WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Theorem

*Every LOOP-computable function is WHILE-computable.
The converse is not true.*

WHILE programs are therefore **strictly more powerful** than LOOP programs.

German: echt mächtiger

WHILE-Computability vs. LOOP-Computability

Proof.

Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent WHILE program, i. e., one computing the same function.

To do so, replace each occurrence of `LOOP x_i DO P END` with

$x_j := x_i;$

`WHILE $x_j \neq 0$ DO`

$x_j := x_j - 1;$

P

`END`

where x_j is a fresh variable.

...

WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are LOOP-computable.

The WHILE program

```
x1 := 1;  
WHILE x1 ≠ 0 DO  
    x1 := 1  
END
```

computes the function $\Omega : \mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ that is **undefined everywhere**.

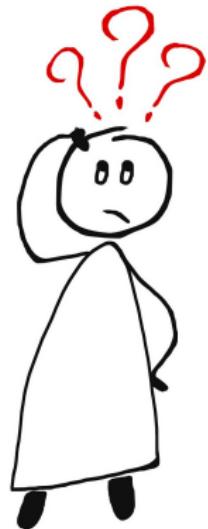
Ω is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total). □

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with WHILE programs, we can use all syntactic sugar we have seen for LOOP programs in WHILE programs e.g.

- $x_i := x_j$ for $i, j \in \mathbb{N}_0$
- $x_i := c$ for $i, c \in \mathbb{N}_0$
- $x_i := x_j + x_k$ for $i, j, k \in \mathbb{N}_0$
- IF $x_i \neq 0$ THEN P END for $i \in \mathbb{N}_0$
- IF $x_i = c$ THEN P END for $i, c \in \mathbb{N}_0$
- Additional syntactic sugar from the exercises

Questions



Questions?

LOOP vs. WHILE: Is There a Practical Difference?

- We have shown that WHILE programs are **strictly more powerful** than LOOP programs.
- The **example** we used is not very relevant in practice because our argument only relied on the fact that LOOP-computable functions are always **total**.
- To terminate for every input is not much of a problem in practice. (Quite the opposite.)
- Are there any **total** functions that are WHILE-computable, but not LOOP-computable?

Ackermann Function: History

- David Hilbert conjectured that **all computable** total functions are primitive recursive (1926).
- Wilhelm Ackermann refuted the conjecture by supplying a counterexample (1928).
- The counterexample was simplified by Rózsa Péter (1935).
~~ [here](#): simplified version

Ackermann Function

Definition (Ackermann function)

The **Ackermann function** $a : \mathbb{N}_0^2 \rightarrow \mathbb{N}_0$ is defined as follows:

$$a(0, y) = y + 1 \quad \text{for all } y \geq 0$$

$$a(x, 0) = a(x - 1, 1) \quad \text{for all } x > 0$$

$$a(x, y) = a(x - 1, a(x, y - 1)) \quad \text{for all } x, y > 0$$

German: Ackermannfunktion

Note: the recursion in the definition is bounded,
so this defines a total function.

Table of Values

	$y = 0$	$y = 1$	$y = 2$	$y = 3$	$y = k$
$a(0, y)$	1	2	3	4	$k + 1$
$a(1, y)$	2	3	4	5	$k + 2$
$a(2, y)$	3	5	7	9	$2k + 3$
$a(3, y)$	5	13	29	61	$2^{k+3} - 3$
$a(4, y)$	13	65533	$2^{65536} - 3$	$2^{2^{65536}} - 3$	$\underbrace{2^{2^{\dots^2}}}_{k+3} - 3$

Computability of the Ackermann Function

Theorem

*The Ackermann function is WHILE-computable,
but not LOOP-computable.*

(Without proof.)

Computability of the Ackermann Function: Proof Idea

proof idea:

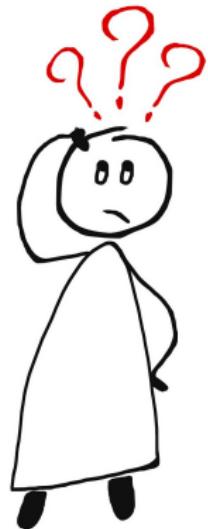
- WHILE-computability:

- show how WHILE programs can simulate a stack
- dual recursion by using a stack
- ~~> WHILE program is easy to specify

- no LOOP-computability:

- show that there is a number k for every LOOP program such that the computed function value is smaller than $a(k, n)$, if n is the largest input value
- proof by structural induction; use $k = \text{"program length"}$
- ~~> Ackermann function grows faster than every LOOP-computable function

Questions



Questions?

WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Theorem

Every WHILE-computable function is Turing-computable.

(We will discuss the converse statement later.)

WHILE-Computability vs. Turing-Computability

Proof sketch.

Given any WHILE program, we construct an equivalent deterministic Turing machine.

Let x_1, \dots, x_k be the input variables of the WHILE program, and let x_0, \dots, x_m be all used variables.

General ideas:

- The DTM simulates the individual execution steps of the WHILE program.
- Before and after each WHILE program step the tape contains the word $bin(n_0)\#bin(n_1)\#\dots\#bin(n_m)$, where n_i is the value of WHILE program variable x_i .
- It is enough to simulate “minimalistic” WHILE programs ($x_i := x_i + 1$, $x_i := x_i - 1$, composition, WHILE loop).

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

The DTM consists of three sequential parts:

- **initialization:**
 - Write 0# in front of the used part of the tape.
 - $(m - k)$ times, write #0 behind the used part of the tape.
- **execution:**

Simulate the WHILE program (see next slide).
- **clean-up:**
 - Replace all symbols starting from the first # with \square , then move to the first symbol that is not \square .

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $x_i := x_i + 1$:

- ① Move left until a blank is reached,
then one step to the right.
- ② $(i + 1)$ times: move right until # or \square is reached.
- ③ Move one step to the left.

↝ We are now on the last digit of the encoding of x_i .

- ④ Execute DTM for increment by 1. (Most difficult part:
“make room” if the number of binary digits increases.)

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $x_i := x_i - 1$:

- ① Move to the last digit of x_i (see previous slide).
- ② Test if the digit is a 0 and the symbol to its left is $\#$ or \square . If so: done.
- ③ Otherwise: execute DTM for decrement by 1.
(Most difficult part: “contract” the tape if the decrement reduces the number of digits.)

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of $P_1; P_2$:

- ① Recursively build DTM $s M_1$ for P_1 and M_2 for P_2 .
- ② Combine these to a DTM for $P_1; P_2$
by letting all transitions to end states of M_1
instead go to the start state of M_2 .

...

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of WHILE $x_i \neq 0$ DO P END:

- ① Recursively build DTM M for P .
- ② Build a DTM M' for WHILE $x_i \neq 0$ DO P END that works as follows:
 - ① Move to the last digit of x_i .
 - ② Test if that symbol is 0 and the symbol to its left is # or \square . If so: done.
 - ③ Otherwise execute M , where all transitions to end states of M are replaced by transitions to the start state of M' .

Summary

Summary

- another new model of computation: **WHILE programs**
- **strictly more powerful** than **LOOP** programs.
- WHILE-, but not LOOP-computable functions:
 - simple example: function that is undefined everywhere
 - more interesting example (total function):
Ackermann function, which grows too fast to be LOOP-computable
- Turing machines are at least as powerful as WHILE programs.