
Theory of Computer Science
F2. WHILE-Computability

Gabriele Röger

University of Basel

May 20, 2019

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 1 / 31

Theory of Computer Science
May 20, 2019 — F2. WHILE-Computability

F2.1 Introduction

F2.2 WHILE Programs

F2.3 WHILE vs. LOOP

F2.4 WHILE vs. Turing

F2.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 2 / 31

F2. WHILE-Computability Introduction

F2.1 Introduction

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 3 / 31

F2. WHILE-Computability Introduction

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

More Computability

LOOP-computability

WHILE-computability

GOTO-computability

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 4 / 31

F2. WHILE-Computability Introduction

LOOP, WHILE and GOTO Programs: Basic Concepts

Reminder:

I LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

I use finitely many variables from the set {x0, x1, x2, . . . }
that can take on values in N0

I differ from each other in the allowed “statements”

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 5 / 31

F2. WHILE-Computability WHILE Programs

F2.2 WHILE Programs

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 6 / 31

F2. WHILE-Computability WHILE Programs

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

I xi := xj + c is a WHILE program
for every i , j , c ∈ N0 (addition)

I xi := xj − c is a WHILE program
for every i , j , c ∈ N0 (modified subtraction)

I If P1 and P2 are WHILE programs,
then so is P1;P2 (composition)

I If P is a WHILE program, then so is
WHILE xi 6= 0 DO P END for every i ∈ N0 (WHILE loop)

German: WHILE-Programm, WHILE-Schleife

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 7 / 31

F2. WHILE-Computability WHILE Programs

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined
exactly as for LOOP programs.

effect of WHILE xi 6= 0 DO P END:

I If xi holds the value 0, program execution finishes.

I Otherwise execute P.

I Repeat these steps until execution finishes
(potentially infinitely often).

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 8 / 31

F2. WHILE-Computability WHILE Programs

WHILE-Computable Functions

Definition (WHILE-Computable)

A function f : Nk
0 →p N0 is called WHILE-computable

if a WHILE program that computes f exists.

German: f ist WHILE-berechenbar

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 9 / 31

F2. WHILE-Computability WHILE Programs

WHILE-Program: Example

Example

WHILE x1 6= 0 DO
x1 := x1 − x2;
x0 := x0 + 1

END

What function does this program compute?

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 10 / 31

F2. WHILE-Computability WHILE vs. LOOP

F2.3 WHILE vs. LOOP

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 11 / 31

F2. WHILE-Computability WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Theorem
Every LOOP-computable function is WHILE-computable.
The converse is not true.

WHILE programs are therefore strictly more powerful
than LOOP programs.

German: echt mächtiger

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 12 / 31

F2. WHILE-Computability WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Proof.
Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent
WHILE program, i. e., one computing the same function.

To do so, replace each occurrence of LOOP xi DO P END with
xj := xi ;
WHILE xj 6= 0 DO

xj := xj − 1;
P

END

where xj is a fresh variable. . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 13 / 31

F2. WHILE-Computability WHILE vs. LOOP

WHILE-Computability vs. LOOP-Computability

Proof (continued).

Part 2: Not all WHILE-computable functions are
LOOP-computable.

The WHILE program
x1 := 1;
WHILE x1 6= 0 DO

x1 := 1
END

computes the function Ω : N0 →p N0 that is undefined everywhere.

Ω is hence WHILE-computable, but not LOOP-computable
(because LOOP-computable functions are always total).

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 14 / 31

F2. WHILE-Computability WHILE vs. LOOP

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

I xi := xj for i , j ∈ N0

I xi := c for i , c ∈ N0

I xi := xj + xk for i , j , k ∈ N0

I IF xi 6= 0 THEN P END for i ∈ N0

I IF xi = c THEN P END for i , c ∈ N0

I Additional syntactic sugar from the exercises

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 15 / 31

F2. WHILE-Computability WHILE vs. LOOP

LOOP vs. WHILE: Is There a Practical Difference?

I We have shown that WHILE programs
are strictly more powerful than LOOP programs.

I The example we used is not very relevant in practice
because our argument only relied on the fact
that LOOP-computable functions are always total.

I To terminate for every input is not much of a problem
in practice. (Quite the opposite.)

I Are there any total functions that are WHILE-computable,
but not LOOP-computable?

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 16 / 31

F2. WHILE-Computability WHILE vs. LOOP

Ackermann Function: History

I David Hilbert conjectured that all computable
total functions are primitive recursive (1926).

I Wilhelm Ackermann refuted the conjecture
by supplying a counterexample (1928).

I The counterexample was simplified by Rózsa Péter (1935).

 here: simplified version

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 17 / 31

F2. WHILE-Computability WHILE vs. LOOP

Ackermann Function

Definition (Ackermann function)

The Ackermann function a : N2
0 → N0 is defined as follows:

a(0, y) = y + 1 for all y ≥ 0

a(x , 0) = a(x − 1, 1) for all x > 0

a(x , y) = a(x − 1, a(x , y − 1)) for all x , y > 0

German: Ackermannfunktion

Note: the recursion in the definition is bounded,
Note: so this defines a total function.

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 18 / 31

F2. WHILE-Computability WHILE vs. LOOP

Table of Values

y = 0 y = 1 y = 2 y = 3 y = k

a(0, y) 1 2 3 4 k + 1

a(1, y) 2 3 4 5 k + 2

a(2, y) 3 5 7 9 2k + 3

a(3, y) 5 13 29 61 2k+3 − 3

a(4, y) 13 65533 265536−3 22
65536−3 22

···
2︸︷︷︸

k+3

−3

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 19 / 31

F2. WHILE-Computability WHILE vs. LOOP

Computability of the Ackermann Function

Theorem
The Ackermann function is WHILE-computable,
but not LOOP-computable.

(Without proof.)

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 20 / 31

F2. WHILE-Computability WHILE vs. LOOP

Computability of the Ackermann Function: Proof Idea

proof idea:
I WHILE-computability:

I show how WHILE programs can simulate a stack
I dual recursion by using a stack
 WHILE program is easy to specify

I no LOOP-computability:
I show that there is a number k for every LOOP program

such that the computed function value is smaller than a(k , n),
if n is the largest input value

I proof by structural induction; use k = “program length”
 Ackermann function grows faster

than every LOOP-computable function

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 21 / 31

F2. WHILE-Computability WHILE vs. Turing

F2.4 WHILE vs. Turing

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 22 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Theorem
Every WHILE-computable function is Turing-computable.

(We will discuss the converse statement later.)

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 23 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch.
Given any WHILE program, we construct an equivalent
deterministic Turing machine.

Let x1, . . . , xk be the input variables of the WHILE program,
and let x0, . . . , xm be all used variables.

General ideas:

I The DTM simulates the individual execution steps
of the WHILE program.

I Before and after each WHILE program step
the tape contains the word bin(n0)#bin(n1)# . . . #bin(nm),
where ni is the value of WHILE program variable xi .

I It is enough to simulate “minimalistic” WHILE programs
(xi := xi + 1, xi := xi − 1, composition, WHILE loop).

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 24 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

The DTM consists of three sequential parts:
I initialization:

I Write 0# in front of the used part of the tape.
I (m − k) times, write #0 behind the used part of the tape.

I execution:
Simulate the WHILE program (see next slide).

I clean-up:
I Replace all symbols starting from the first # with �,

then move to the first symbol that is not �.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 25 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of xi := xi + 1:

1 Move left until a blank is reached,
then one step to the right.

2 (i + 1) times: move right until # or � is reached.

3 Move one step to the left.

 We are now on the last digit of the encoding of xi .

4 Execute DTM for increment by 1. (Most difficult part:
“make room” if the number of binary digits increases.)

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 26 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of xi := xi − 1:

1 Move to the last digit of xi (see previous slide).

2 Test if the digit is a 0 and the symbol
to its left is # or �. If so: done.

3 Otherwise: execute DTM for decrement by 1.
(Most difficult part: “contract” the tape if the decrement
reduces the number of digits.)

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 27 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of P1; P2:

1 Recursively build DTMs M1 for P1 and M2 for P2.

2 Combine these to a DTM for P1; P2

by letting all transitions to end states of M1

instead go to the start state of M2.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 28 / 31

F2. WHILE-Computability WHILE vs. Turing

WHILE-Computability vs. Turing-Computability

Proof sketch (continued).

Simulation of WHILE xi 6= 0 DO P END:

1 Recursively build DTM M for P.

2 Build a DTM M ′ for WHILE xi 6= 0 DO P END
that works as follows:

1 Move to the last digit of xi .
2 Test if that symbol is 0 and the symbol to its left is # or �.

If so: done.
3 Otherwise execute M, where all transitions to end states of M

are replaced by transitions to the start state of M ′.

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 29 / 31

F2. WHILE-Computability Summary

F2.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 30 / 31

F2. WHILE-Computability Summary

Summary

I another new model of computation: WHILE programs

I strictly more powerful than LOOP programs.
I WHILE-, but not LOOP-computable functions:

I simple example: function that is undefined everywhere
I more interesting example (total function):

Ackermann function, which grows too fast
to be LOOP-computable

I Turing machines are at least as powerful as WHILE programs.

Gabriele Röger (University of Basel) Theory of Computer Science May 20, 2019 31 / 31

	Introduction
	

	WHILE Programs
	

	WHILE vs. LOOP
	

	WHILE vs. Turing
	

	Summary
	

