Theory of Computer Science F1. LOOP-Computability

Gabriele Röger

University of Basel

May 15, 2019

### Overview: Course

#### contents of this course:

A. background  $\checkmark$ 

b mathematical foundations and proof techniques

- B. logic √
  - How can knowledge be represented? How can reasoning be automated?
- C. automata theory and formal languages √▷ What is a computation?
- D. Turing computability  $\checkmark$

▷ What can be computed at all?

E. complexity theory  $\checkmark$ 

What can be computed efficiently?

- F. more computability theory
  - $\triangleright$  Other models of computability

| Introduction |
|--------------|
| 0000         |

LOOP Programs

Syntactic Sugar

# Introduction

| Introduction |
|--------------|
| 0000         |

LOOP Program

Syntactic Sugar

### **Course Overview**



# Formal Models of Computation: LOOP/WHILE/GOTO

#### Formal Models of Computation

- Turing machines
- LOOP, WHILE and GOTO programs
- (primitive recursive and µ-recursive functions)

In this and the following chapter we get to know three simple models of computation (programming languages) and compare their power to Turing machines:

- LOOP programs ~→ today
- WHILE programs ~→ F2
- GOTO programs ~→ F3

## LOOP, WHILE and GOTO Programs: Basic Concepts

- LOOP, WHILE and GOTO programs are structured like programs in (simple) "traditional" programming languages
- use finitely many variables from the set  $\{x_0, x_1, x_2, \dots\}$  that can take on values in  $\mathbb{N}_0$
- differ from each other in the allowed "statements"

Introduction 0000 LOOP Programs

Syntactic Sugar

Summary 00

# LOOP Programs

LOOP Programs

Syntactic Sugar

### **Course Overview**



# LOOP Programs: Syntax

#### Definition (LOOP Program)

LOOP programs are inductively defined as follows:

- $x_i := x_j + c$  is a LOOP program for every  $i, j, c \in \mathbb{N}_0$  (addition)
- $x_i := x_j c$  is a LOOP program for every  $i, j, c \in \mathbb{N}_0$  (modified subtraction)
- If P<sub>1</sub> and P<sub>2</sub> are LOOP programs, then so is P<sub>1</sub>;P<sub>2</sub> (composition)
- If *P* is a LOOP program, then so is LOOP  $x_i$  DO *P* END for every  $i \in \mathbb{N}_0$  (LOOP loop)

German: LOOP-Programm, Addition,

modifizierte Subtraktion, Komposition, LOOP-Schleife

# LOOP Programs: Semantics

#### Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function

- $f: \mathbb{N}_0^k \to \mathbb{N}_0$ . The computation of  $f(n_1, \ldots, n_k)$  works as follows:
  - Initially, the variables x<sub>1</sub>,..., x<sub>k</sub> hold the values n<sub>1</sub>,..., n<sub>k</sub>.
     All other variables hold the value 0.
  - Ouring computation, the program modifies the variables as described on the following slides.
  - The result of the computation  $(f(n_1, ..., n_k))$  is the value of  $x_0$  after the execution of the program.

German: P berechnet f

## LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of  $x_i := x_j + c$ :

- The variable  $x_i$  is assigned the current value of  $x_j$  plus c.
- All other variables retain their value.

## LOOP Programs: Semantics

#### Definition (Semantics of LOOP Programs)

effect of  $x_i := x_j - c$ :

- The variable x<sub>i</sub> is assigned the current value of x<sub>j</sub> minus c if this value is non-negative.
- Otherwise  $x_i$  is assigned the value 0.
- All other variables retain their value.

### LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of  $P_1$ ;  $P_2$ :

- First, execute  $P_1$ .
  - Then, execute  $P_2$  (on the modified variable values).

## LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of LOOP  $x_i$  DO P END:

- Let m be the value of variable  $x_i$  at the start of execution.
- The program *P* is executed *m* times in sequence.

### LOOP-Computable Functions

#### Definition (LOOP-Computable)

A function  $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$  is called LOOP-computable if a LOOP program that computes f exists.

#### German: f ist LOOP-berechenbar

Note: non-total functions are never LOOP-computable. (Why not?) LOOP Programs

Syntactic Sugar

### LOOP Programs: Example

#### Example (LOOP program for $f(x_1, x_2)$ )

LOOP  $x_1$  DO LOOP  $x_2$  DO  $x_0 := x_0 + 1$ END END

Which (binary) function does this program compute?

Introduction 0000 LOOP Programs

Syntactic Sugar

Summary 00

# Questions



### Questions?

LOOP Programs

Syntactic Sugar

Summary 00

# Syntactic Sugar

### Syntactic Sugar or Essential Feature?

- We investigate the power of programming languages and other computation formalisms.
- Rich language features help when writing complex programs.
- Minimalistic formalisms are useful for proving statements over all programs.
- → conflict of interest!

Idea:

- Use minimalistic core for proofs.
- Use syntactic sugar when writing programs.

German: syntaktischer Zucker

#### Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

• 
$$x_i := x_j$$
 for  $i, j \in \mathbb{N}_0$ 

- $x_i := c$  for  $i, c \in \mathbb{N}_0$
- $x_i := x_j + x_k$  for  $i, j, k \in \mathbb{N}_0$
- IF  $x_i \neq 0$  THEN *P* END for  $i \in \mathbb{N}_0$
- IF  $x_i = c$  THEN P END for  $i, c \in \mathbb{N}_0$

Can we simulate these with the existing constructs?

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               |                 |  |

#### Example (syntactic sugar)

 $x_i := x_j$  for  $i, j \in \mathbb{N}_0$ 

Simulation with existing constructs?

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               |                 |  |

#### Example (syntactic sugar)

 $x_i := x_j$  for  $i, j \in \mathbb{N}_0$ 

Simple abbreviation for  $x_i := x_j + 0$ .

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               |                 |  |

#### Example (syntactic sugar)

 $x_i := c$  for  $i, c \in \mathbb{N}_0$ 

Simulation with existing constructs?

#### Example (syntactic sugar)

 $x_i := c$  for  $i, c \in \mathbb{N}_0$ 

Simple abbreviation for  $x_i := x_i + c$ ,

where  $x_j$  is a fresh variable, i.e., an otherwise unused variable that is not an input variable.

(Thus  $x_j$  must always have the value 0 in all executions.)

|      | LOOP Programs | Syntactic Sugar |    |
|------|---------------|-----------------|----|
| 0000 | 000000        | 00000           | 00 |
|      |               |                 |    |

#### Example (syntactic sugar)

 $x_i := x_j + x_k$  for  $i, j, k \in \mathbb{N}_0$ 

Simulation with existing constructs?

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               |                 |  |

#### Example (syntactic sugar)

```
x_i := x_j + x_k for i, j, k \in \mathbb{N}_0
```

#### Abbreviation for:

$$x_i := x_j;$$
  
LOOP  $x_k$  DO  
 $x_i := x_i + 1$   
END

Analogously we will also use the following:

• 
$$x_i := x_j - x_k$$
  
•  $x_i := x_j + x_k - c - x_m + d$   
• etc.

|      | LOOP Programs | Synt |
|------|---------------|------|
| 0000 | 0000000       | 000  |

#### Example (syntactic sugar)

```
IF x_i \neq 0 THEN P END for i \in \mathbb{N}_0
```

#### Simulation with existing constructs?

|      | LOOP Programs | Syntactic Sugar |    |
|------|---------------|-----------------|----|
| 0000 | 000000        | 00000           | 00 |

#### Example (syntactic sugar)

```
IF x_i \neq 0 THEN P END for i \in \mathbb{N}_0
```

#### Abbreviation for:

```
x_j := 0;

LOOP x_i DO

x_j := 1

END;

LOOP x_j DO

P

END
```

where  $x_j$  is a fresh variable.

| LOOP Programs | Syntactic Sugar<br>00●00 |  |
|---------------|--------------------------|--|
|               |                          |  |

Example (syntactic sugar)

IF  $x_i = c$  THEN P END for  $i, c \in \mathbb{N}_0$ 

Simulation with existing constructs?

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               |                 |  |

#### Example (syntactic sugar)

```
IF x_i = c THEN P END for i, c \in \mathbb{N}_0
```

#### Abbreviation for:

```
\begin{array}{l} x_j := 1; \\ x_k := x_i - c; \\ \text{IF } x_k \neq 0 \text{ THEN } x_j := 0 \text{ END}; \\ x_k := c - x_i; \\ \text{IF } x_k \neq 0 \text{ THEN } x_j := 0 \text{ END}; \\ \text{IF } x_j \neq 0 \text{ THEN } \\ P \\ \text{END} \end{array}
```

where  $x_j$  and  $x_k$  are fresh variables.

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               |                 |  |

### Can We Be More Minimalistic?

- We see that some common structural elements such as IF statements are unnecessary because they are syntactic sugar.
- Can we make LOOP programs even more minimalistic than in our definition?

| Introduction | LOOP Programs | Syntactic Sugar |  |
|--------------|---------------|-----------------|--|
|              |               | 00000           |  |
|              |               | 2               |  |

#### Can We Be More Minimalistic?

- We see that some common structural elements such as IF statements are unnecessary because they are syntactic sugar.
- Can we make LOOP programs even more minimalistic than in our definition?

#### Simplification 1

Instead of  $x_i := x_j + c$  and  $x_i := x_j - c$  it suffices to only allow the constructs

•  $x_i := x_j$ , •  $x_i := x_i + 1$  and •  $x_i := x_i - 1$ .

Why?

| LOOP Programs | Syntactic Sugar |  |
|---------------|-----------------|--|
|               | 00000           |  |
|               | 2               |  |

### Can We Be More Minimalistic?

- We see that some common structural elements such as IF statements are unnecessary because they are syntactic sugar.
- Can we make LOOP programs even more minimalistic than in our definition?

#### Simplification 2

The construct  $x_i := x_j$  can be omitted because it can be simulated with other constructs: LOOP  $x_i$  DO  $x_i := x_i - 1$ END; LOOP  $x_j$  DO  $x_i := x_i + 1$ END Introduction 0000 LOOP Programs

Syntactic Sugar

Summary 00

# Questions



### Questions?

LOOP Programs

Syntactic Sugar

Summary ●0

# Summary

Introduction 0000 LOOP Program

Syntactic Sugar

# Summary

#### LOOP programs

- new model of computation for numerical functions
- closer to typical programming languages than Turing machines