Theory of Computer Science
F1. LOOP-Computability

Gabriele Roger
University of Basel

May 15, 2019

Overview: Course

contents of this course:

A.

background v
> mathematical foundations and proof techniques
logic v
> How can knowledge be represented?
How can reasoning be automated?
automata theory and formal languages v
> What is a computation?

. Turing computability v/

> What can be computed at all?

. complexity theory v

> What can be computed efficiently?

more computability theory
> Other models of computability

Introduction

Introduction
000

Course QOverview

—{ Background ‘

—{ Logic ‘

—{ Automata Theory ‘

LOOP-computability ‘

—{ Turing Computability‘

WHILE-computability |

—{ Complexity ‘

GOTO-computability ‘

Introduction

[e]e] o]

Formal Models of Computatlon LOOP/WHILE/GOTO

Formal Models of Computation

m Turing machines
m LOOP, WHILE and GOTO programs

m (primitive recursive and pu-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

m LOOP programs ~~ today
m WHILE programs ~~» F2
m GOTO programs ~~ F3

Introduction LOOP Pr

Summary
[e]e]e]]

LOOP, WHILE and GOTO Programs: Basic Concepts

m LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

m use finitely many variables from the set {xo, x1, x2, ...}
that can take on values in Ny

m differ from each other in the allowed “statements”

LOOP Programs
0000000

LOOP Programs

LOOP Programs
(o] lelelele]e]

Course QOverview

—| Background |

—| Logic |

—| Automata Theory |

% Turing Computability|

i |

WHILE-computability |

Complexity

GOTO-computability |

Introduction LOOP Programs
0000 fole] Yololele)

Summary

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

m x; := x; + cis a LOOP program
for every i,j, c € Ny (addition)
m x; = x; — cisa LOOP program
for every i, j, c € Ng (modified subtraction)
m If P; and P, are LOOP programs,
then so is P;;P, (composition)
m If Pis a LOOP program, then so is
LOOP x; DO P END for every i € Ny (LOOP loop)

German: LOOP-Programm, Addition,
modifizierte Subtraktion, Komposition, LOOP-Schleife

Introduction LOOP Programs Syntactic Sugar Summary
0000 [e]e]e] Jelele] O ole} [e]e)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : N§ — No. The computation of f(ny, ..., ng) works as follows:

Q Initially, the variables xg, ..., xx hold the values ny, ..., ng.
All other variables hold the value 0.

@ During computation, the program modifies the variables
as described on the following slides.

@ The result of the computation (f(ny,...,nk)) is
the value of xp after the execution of the program.

German: P berechnet f

LOOP Programs

0O00@000

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of x; := x; + c:
m The variable x; is assigned the current value of x; plus c.

m All other variables retain their value.

LOOP Programs
000000

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of x; := x; — c:
m The variable x; is assigned the current value of x; minus ¢
if this value is non-negative.
m Otherwise x; is assigned the value 0.

m All other variables retain their value.

Introduction LOOP Programs Syntactic Sugar Summar
000®000

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of Py; Po:

m First, execute P;.
Then, execute P, (on the modified variable values).

Introduction LOOP Programs

Summar
[e]e]e] Jelele] [e]e]e]e]e)

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
effect of LOOP x; DO P END:

m Let m be the value of variable x; at the start of execution.

m The program P is executed m times in sequence.

Introduction LOOP Programs
0000 0000@00

LOOP-Computable Functions

Definition (LOOP-Computable)

A function f : N(’)‘ —p Np is called LOOP-computable
if a LOOP program that computes f exists.

German: f ist LOOP-berechenbar

Note: non-total functions are never LOOP-computable.
(Why not?)

Introduction LOOP Programs Syntactic Sugar Summary
0000080 00000 0o

LOOP Programs: Example

Example (LOOP program for f(x1,x2))

LOOP x; DO
LOOP x» DO
X0 :=Xxp+1
END
END

Which (binary) function does this program compute?

LOOP Programs

000000

Questions

N

00

~

Questions?

Syntactic Sugar
©0000

Syntactic Sugar

Syntactic Sugar

0@000

Syntactic Sugar or Essential Feature?

m We investigate the power of programming languages
and other computation formalisms.

m Rich language features help when writing complex programs.

m Minimalistic formalisms are useful for proving statements
over all programs.

~ conflict of interest!

Idea:
m Use minimalistic core for proofs.

m Use syntactic sugar when writing programs.

German: syntaktischer Zucker

Introduction OOP Programs Syntactic Sugar Summary
0000000 00000

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):
m x; ;= x; for i,j € Ny
m x;=cfori,c €Ny
B x; =X +x, fori,j, k € Ng
m IF x; 0 THEN P END for i € Ny
m IF x; = c THEN P END for i,c € Ng

Can we simulate these with the existing constructs?

Introduction

Syntactic Sugar Summary
00000 00

Example: Syntactic Sugar

Example (syntactic sugar)

xj = xj for i,j € Np

Simulation with existing constructs?

Introduction

Syntactic Sugar Summary
00000 00

Example: Syntactic Sugar

Example (syntactic sugar)

xj = xj for i,j € Np

Simple abbreviation for x; := x; + 0.

Introduction

Syntactic Sugar Summary
00000 00

Example: Syntactic Sugar

Example (syntactic sugar)

x; := c for i,c € Ny

Simulation with existing constructs?

Syntactic Sugar

Introduction
0000 0O0e00

Example: Syntactic Sugar

Example (syntactic sugar)

x; := c for i,c € Ny

Simple abbreviation for x; := x; + c,

where x; is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.

(Thus x; must always have the value 0 in all executions.)

Summary

Introduction

Syntactic Sugar Summary
00000 00

Example: Syntactic Sugar

Example (syntactic sugar)

Xj = xj + xi for i,j, k € Ng

Simulation with existing constructs?

Introduction

Syntactic Sugar Summary
00000 oo

Example: Syntactic Sugar

Example (syntactic sugar)

Xj = xj + xi for i,j, k € Ng

Abbreviation for:
X 1= Xj;
LOOP x, DO
xj = x;+ 1
END
Analogously we will also use the following:
X = XJ — Xk
BX =X +X—C—Xm+d

m etc.

Introduction 0C ogra Syntactic Sugar Summary
0000000 00000

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; 20 THEN P END for i € Ny

Simulation with existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

0000000 0O0e00

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; 20 THEN P END for i € Ny

Abbreviation for:
xj :=0;
LOOP x; DO

xj =1
END;
LOOP x; DO
P
END

where X; is a fresh variable.

Introduction

Syntactic Sugar Summary
00000 00

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; = ¢ THEN P END for i,c € Ny

Simulation with existing constructs?

Introduction LOOP Programs

Example: Syntactic Sugar

Example (syntactic sugar)
IF x; = ¢ THEN P END for i,c € Ny

Abbreviation for:
xj =1,
Xk = Xj — C,
IF x, # 0 THEN x; := 0 END;
XKk = C — Xj,
IF xx # 0 THEN x; := 0 END;
IF x; # 0 THEN
P
END

where x; and x; are fresh variables.

Syntactic Sugar
00000

Summary

Syntactic Sugar
00000

Can We Be More Minimalistic?

m We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

m Can we make LOOP programs even more minimalistic
than in our definition?

Introduction LOC ograms Syntactic Sugar Summary

(o]e]e] le]

Can We Be More Minimalistic?

m We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

m Can we make LOOP programs even more minimalistic
than in our definition?

Simplification 1
Instead of x; := x; + c and x; := x; — c it suffices
to only allow the constructs

B X = Xj,

m X :=x; +1and

mx=x — 1.

Why?

Introduction 0C gra Syntactic Sugar Summary

Can We Be More Minimalistic?

(o]e]e] le]

m We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

m Can we make LOOP programs even more minimalistic
than in our definition?

Simplification 2

The construct x; := x; can be omitted
because it can be simulated with other constructs:
LOOP x; DO
Xi=x;—1
END;
LOOP x; DO
Xi=xi+1
END

Syntactic Sugar

(o]e]e]e]]

Questions

N

00

~

Questions?

[Je]

Summary

Summary

oe

Summary

LOOP programs
m new model of computation for numerical functions

m closer to typical programming languages than Turing machines

	Introduction
	

	LOOP Programs
	

	Syntactic Sugar
	

	Summary
	

