
Theory of Computer Science
F1. LOOP-Computability

Gabriele Röger

University of Basel

May 15, 2019

Introduction LOOP Programs Syntactic Sugar Summary

Overview: Course

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability X
. What can be computed at all?

E. complexity theory X
. What can be computed efficiently?

F. more computability theory
. Other models of computability

Introduction LOOP Programs Syntactic Sugar Summary

Introduction

Introduction LOOP Programs Syntactic Sugar Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

More Computability

LOOP-computability

WHILE-computability

GOTO-computability

Introduction LOOP Programs Syntactic Sugar Summary

Formal Models of Computation: LOOP/WHILE/GOTO

Formal Models of Computation

Turing machines

LOOP, WHILE and GOTO programs

(primitive recursive and µ-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

LOOP programs today

WHILE programs F2

GOTO programs F3

Introduction LOOP Programs Syntactic Sugar Summary

LOOP, WHILE and GOTO Programs: Basic Concepts

LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

use finitely many variables from the set {x0, x1, x2, . . . }
that can take on values in N0

differ from each other in the allowed “statements”

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs

Introduction LOOP Programs Syntactic Sugar Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

More Computability

LOOP-computability

WHILE-computability

GOTO-computability

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

xi := xj + c is a LOOP program
for every i , j , c ∈ N0 (addition)

xi := xj − c is a LOOP program
for every i , j , c ∈ N0 (modified subtraction)

If P1 and P2 are LOOP programs,
then so is P1;P2 (composition)

If P is a LOOP program, then so is
LOOP xi DO P END for every i ∈ N0 (LOOP loop)

German: LOOP-Programm, Addition,

German: modifizierte Subtraktion, Komposition, LOOP-Schleife

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : Nk

0 → N0. The computation of f (n1, . . . , nk) works as follows:

1 Initially, the variables x1, . . . , xk hold the values n1, . . . , nk .
All other variables hold the value 0.

2 During computation, the program modifies the variables
as described on the following slides.

3 The result of the computation (f (n1, . . . , nk)) is
the value of x0 after the execution of the program.

German: P berechnet f

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj + c :

The variable xi is assigned the current value of xj plus c .

All other variables retain their value.

German: P berechnet f

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj − c :

The variable xi is assigned the current value of xj minus c
if this value is non-negative.

Otherwise xi is assigned the value 0.

All other variables retain their value.

German: P berechnet f

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of P1; P2:

First, execute P1.
Then, execute P2 (on the modified variable values).

German: P berechnet f

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of LOOP xi DO P END:

Let m be the value of variable xi at the start of execution.

The program P is executed m times in sequence.

German: P berechnet f

Introduction LOOP Programs Syntactic Sugar Summary

LOOP-Computable Functions

Definition (LOOP-Computable)

A function f : Nk
0 →p N0 is called LOOP-computable

if a LOOP program that computes f exists.

German: f ist LOOP-berechenbar

Note: non-total functions are never LOOP-computable.
Note: (Why not?)

Introduction LOOP Programs Syntactic Sugar Summary

LOOP Programs: Example

Example (LOOP program for f (x1, x2))

LOOP x1 DO
LOOP x2 DO

x0 := x0 + 1
END

END

Which (binary) function does this program compute?

Introduction LOOP Programs Syntactic Sugar Summary

Questions

Questions?

Introduction LOOP Programs Syntactic Sugar Summary

Syntactic Sugar

Introduction LOOP Programs Syntactic Sugar Summary

Syntactic Sugar or Essential Feature?

We investigate the power of programming languages
and other computation formalisms.

Rich language features help when writing complex programs.

Minimalistic formalisms are useful for proving statements
over all programs.

 conflict of interest!

Idea:

Use minimalistic core for proofs.

Use syntactic sugar when writing programs.

German: syntaktischer Zucker

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

xi := xj for i , j ∈ N0

xi := c for i , c ∈ N0

xi := xj + xk for i , j , k ∈ N0

IF xi 6= 0 THEN P END for i ∈ N0

IF xi = c THEN P END for i , c ∈ N0

Can we simulate these with the existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj for i , j ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj for i , j ∈ N0

Simple abbreviation for xi := xj + 0.

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := c for i , c ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := c for i , c ∈ N0

Simple abbreviation for xi := xj + c ,
where xj is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.
(Thus xj must always have the value 0 in all executions.)

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj + xk for i , j , k ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj + xk for i , j , k ∈ N0

Abbreviation for:
xi := xj ;
LOOP xk DO
xi := xi + 1

END

Analogously we will also use the following:

xi := xj − xk

xi := xj + xk − c − xm + d

etc.

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi 6= 0 THEN P END for i ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi 6= 0 THEN P END for i ∈ N0

Abbreviation for:

xj := 0;
LOOP xi DO

xj := 1
END;
LOOP xj DO

P
END

where xj is a fresh variable.

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi = c THEN P END for i , c ∈ N0

Simulation with existing constructs?

Introduction LOOP Programs Syntactic Sugar Summary

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi = c THEN P END for i , c ∈ N0

Abbreviation for:

xj := 1;
xk := xi − c ;
IF xk 6= 0 THEN xj := 0 END;
xk := c − xi ;
IF xk 6= 0 THEN xj := 0 END;
IF xj 6= 0 THEN
P

END

where xj and xk are fresh variables.

Introduction LOOP Programs Syntactic Sugar Summary

Can We Be More Minimalistic?

We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

Can we make LOOP programs even more minimalistic
than in our definition?

Introduction LOOP Programs Syntactic Sugar Summary

Can We Be More Minimalistic?

We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

Can we make LOOP programs even more minimalistic
than in our definition?

Simplification 1

Instead of xi := xj + c and xi := xj − c it suffices
to only allow the constructs

xi := xj ,

xi := xi + 1 and

xi := xi − 1.

Why?

Introduction LOOP Programs Syntactic Sugar Summary

Can We Be More Minimalistic?

We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

Can we make LOOP programs even more minimalistic
than in our definition?

Simplification 2

The construct xi := xj can be omitted
because it can be simulated with other constructs:

LOOP xi DO
xi := xi − 1

END;
LOOP xj DO
xi := xi + 1

END

Introduction LOOP Programs Syntactic Sugar Summary

Questions

Questions?

Introduction LOOP Programs Syntactic Sugar Summary

Summary

Introduction LOOP Programs Syntactic Sugar Summary

Summary

LOOP programs

new model of computation for numerical functions

closer to typical programming languages than Turing machines

	Introduction
	

	LOOP Programs
	

	Syntactic Sugar
	

	Summary
	

