
Theory of Computer Science
F1. LOOP-Computability

Gabriele Röger

University of Basel

May 15, 2019

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 1 / 28

Theory of Computer Science
May 15, 2019 — F1. LOOP-Computability

F1.1 Introduction

F1.2 LOOP Programs

F1.3 Syntactic Sugar

F1.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 2 / 28

Overview: Course

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability X
. What can be computed at all?

E. complexity theory X
. What can be computed efficiently?

F. more computability theory
. Other models of computability

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 3 / 28

F1. LOOP-Computability Introduction

F1.1 Introduction

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 4 / 28

F1. LOOP-Computability Introduction

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

More Computability

LOOP-computability

WHILE-computability

GOTO-computability

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 5 / 28

F1. LOOP-Computability Introduction

Formal Models of Computation: LOOP/WHILE/GOTO

Formal Models of Computation
I Turing machines

I LOOP, WHILE and GOTO programs

I (primitive recursive and µ-recursive functions)

In this and the following chapter we get to know
three simple models of computation (programming languages)
and compare their power to Turing machines:

I LOOP programs today

I WHILE programs F2

I GOTO programs F3

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 6 / 28

F1. LOOP-Computability Introduction

LOOP, WHILE and GOTO Programs: Basic Concepts

I LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

I use finitely many variables from the set {x0, x1, x2, . . . }
that can take on values in N0

I differ from each other in the allowed “statements”

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 7 / 28

F1. LOOP-Computability LOOP Programs

F1.2 LOOP Programs

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 8 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

I xi := xj + c is a LOOP program
for every i , j , c ∈ N0 (addition)

I xi := xj − c is a LOOP program
for every i , j , c ∈ N0 (modified subtraction)

I If P1 and P2 are LOOP programs,
then so is P1;P2 (composition)

I If P is a LOOP program, then so is
LOOP xi DO P END for every i ∈ N0 (LOOP loop)

German: LOOP-Programm, Addition,

German: modifizierte Subtraktion, Komposition, LOOP-Schleife

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 9 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : Nk

0 → N0. The computation of f (n1, . . . , nk) works as follows:

1 Initially, the variables x1, . . . , xk hold the values n1, . . . , nk .
All other variables hold the value 0.

2 During computation, the program modifies the variables
as described on the following slides.

3 The result of the computation (f (n1, . . . , nk)) is
the value of x0 after the execution of the program.

German: P berechnet f

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 10 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj + c :

I The variable xi is assigned the current value of xj plus c .

I All other variables retain their value.

German: P berechnet f

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 11 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj − c :

I The variable xi is assigned the current value of xj minus c
if this value is non-negative.

I Otherwise xi is assigned the value 0.

I All other variables retain their value.

German: P berechnet f

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 12 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of P1; P2:

I First, execute P1.
Then, execute P2 (on the modified variable values).

German: P berechnet f

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 13 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of LOOP xi DO P END:

I Let m be the value of variable xi at the start of execution.

I The program P is executed m times in sequence.

German: P berechnet f

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 14 / 28

F1. LOOP-Computability LOOP Programs

LOOP-Computable Functions

Definition (LOOP-Computable)

A function f : Nk
0 →p N0 is called LOOP-computable

if a LOOP program that computes f exists.

German: f ist LOOP-berechenbar

Note: non-total functions are never LOOP-computable.
Note: (Why not?)

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 15 / 28

F1. LOOP-Computability LOOP Programs

LOOP Programs: Example

Example (LOOP program for f (x1, x2))

LOOP x1 DO
LOOP x2 DO

x0 := x0 + 1
END

END

Which (binary) function does this program compute?

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 16 / 28

F1. LOOP-Computability Syntactic Sugar

F1.3 Syntactic Sugar

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 17 / 28

F1. LOOP-Computability Syntactic Sugar

Syntactic Sugar or Essential Feature?

I We investigate the power of programming languages
and other computation formalisms.

I Rich language features help when writing complex programs.

I Minimalistic formalisms are useful for proving statements
over all programs.

 conflict of interest!

Idea:

I Use minimalistic core for proofs.

I Use syntactic sugar when writing programs.

German: syntaktischer Zucker

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 18 / 28

F1. LOOP-Computability Syntactic Sugar

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

I xi := xj for i , j ∈ N0

I xi := c for i , c ∈ N0

I xi := xj + xk for i , j , k ∈ N0

I IF xi 6= 0 THEN P END for i ∈ N0

I IF xi = c THEN P END for i , c ∈ N0

Can we simulate these with the existing constructs?

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 19 / 28

F1. LOOP-Computability Syntactic Sugar

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj for i , j ∈ N0

Simple abbreviation for xi := xj + 0.

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 20 / 28

F1. LOOP-Computability Syntactic Sugar

Example: Syntactic Sugar

Example (syntactic sugar)

xi := c for i , c ∈ N0

Simple abbreviation for xi := xj + c ,
where xj is a fresh variable, i.e., an otherwise unused variable
that is not an input variable.
(Thus xj must always have the value 0 in all executions.)

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 21 / 28

F1. LOOP-Computability Syntactic Sugar

Example: Syntactic Sugar

Example (syntactic sugar)

xi := xj + xk for i , j , k ∈ N0

Abbreviation for:
xi := xj ;
LOOP xk DO

xi := xi + 1
END

Analogously we will also use the following:

I xi := xj − xk
I xi := xj + xk − c − xm + d

I etc.

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 22 / 28

F1. LOOP-Computability Syntactic Sugar

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi 6= 0 THEN P END for i ∈ N0

Abbreviation for:

xj := 0;
LOOP xi DO

xj := 1
END;
LOOP xj DO

P
END

where xj is a fresh variable.

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 23 / 28

F1. LOOP-Computability Syntactic Sugar

Example: Syntactic Sugar

Example (syntactic sugar)

IF xi = c THEN P END for i , c ∈ N0

Abbreviation for:

xj := 1;
xk := xi − c ;
IF xk 6= 0 THEN xj := 0 END;
xk := c − xi ;
IF xk 6= 0 THEN xj := 0 END;
IF xj 6= 0 THEN

P
END

where xj and xk are fresh variables.

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 24 / 28

F1. LOOP-Computability Syntactic Sugar

Can We Be More Minimalistic?

I We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

I Can we make LOOP programs even more minimalistic
than in our definition?

Simplification 1

Instead of xi := xj + c and xi := xj − c it suffices
to only allow the constructs

I xi := xj ,

I xi := xi + 1 and

I xi := xi − 1.

Why?

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 25 / 28

F1. LOOP-Computability Syntactic Sugar

Can We Be More Minimalistic?

I We see that some common structural elements such as IF
statements are unnecessary because they are syntactic sugar.

I Can we make LOOP programs even more minimalistic
than in our definition?

Simplification 2

The construct xi := xj can be omitted
because it can be simulated with other constructs:

LOOP xi DO
xi := xi − 1

END;
LOOP xj DO

xi := xi + 1
END

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 26 / 28

F1. LOOP-Computability Summary

F1.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 27 / 28

F1. LOOP-Computability Summary

Summary

LOOP programs

I new model of computation for numerical functions

I closer to typical programming languages than Turing machines

Gabriele Röger (University of Basel) Theory of Computer Science May 15, 2019 28 / 28

	Introduction
	

	LOOP Programs
	

	Syntactic Sugar
	

	Summary
	

