
Theory of Computer Science
E5. Some NP-Complete Problems, Part II

Gabriele Röger

University of Basel

May 13, 2019

Packing Problems Conclusion

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

Packing Problems Conclusion

Packing Problems

Packing Problems Conclusion

Overview of the Reductions

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Packing Problems Conclusion

3SAT ≤p SubsetSum

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Packing Problems Conclusion

SubsetSum is NP-Complete (1)

Definition (SubsetSum)

The problem SubsetSum is defined as follows:

Given: numbers a1, . . . , ak ∈ N0 and b ∈ N0

Question: Is there a subset J ⊆ {1, . . . , k} with
∑

i∈J ai = b?

Theorem

SubsetSum is NP-complete.

Packing Problems Conclusion

SubsetSum is NP-Complete (2)

Proof.

SubsetSum ∈ NP: guess and check.

SubsetSum is NP-hard: We show 3SAT ≤p SubsetSum.

Given a 3-CNF formula ϕ, we compute a SubsetSum instance
that has a solution iff ϕ is satisfiable.

We can assume that all clauses have exactly three literals
and that the literals in each clause are unique.

Let m be the number of clauses in ϕ,
and let n be the number of variables.

Number the propositional variables in ϕ in any way,
so that it is possible to refer to “the i-th variable”. . . .

Packing Problems Conclusion

SubsetSum is NP-Complete (2)

Proof.

SubsetSum ∈ NP: guess and check.

SubsetSum is NP-hard: We show 3SAT ≤p SubsetSum.

Given a 3-CNF formula ϕ, we compute a SubsetSum instance
that has a solution iff ϕ is satisfiable.

We can assume that all clauses have exactly three literals
and that the literals in each clause are unique.

Let m be the number of clauses in ϕ,
and let n be the number of variables.

Number the propositional variables in ϕ in any way,
so that it is possible to refer to “the i-th variable”. . . .

Packing Problems Conclusion

SubsetSum is NP-Complete (2)

Proof.

SubsetSum ∈ NP: guess and check.

SubsetSum is NP-hard: We show 3SAT ≤p SubsetSum.

Given a 3-CNF formula ϕ, we compute a SubsetSum instance
that has a solution iff ϕ is satisfiable.

We can assume that all clauses have exactly three literals
and that the literals in each clause are unique.

Let m be the number of clauses in ϕ,
and let n be the number of variables.

Number the propositional variables in ϕ in any way,
so that it is possible to refer to “the i-th variable”. . . .

Packing Problems Conclusion

SubsetSum is NP-Complete (3)

Proof (continued).

The target number of the SubsetSum instance is∑n
i=1 10i−1 +

∑m
i=1 4 · 10i+n−1

(in decimal digits: m 4s followed by n 1s).

The numbers to select from are:

one number for each literal (X or ¬X):
if the literal belongs to the j-th variable and occurs
(exactly) in the k clauses i1, . . . , ik , its literal number is
10j−1 + 10i1+n−1 + · · ·+ 10ik+n−1.

for each clause, two padding numbers:
10i+n−1 and 2 · 10i+n−1 for all i ∈ {1, . . . ,m}.

This SubsetSum instance can be produced in polynomial time.
. . .

Packing Problems Conclusion

SubsetSum is NP-Complete (3)

Proof (continued).

The target number of the SubsetSum instance is∑n
i=1 10i−1 +

∑m
i=1 4 · 10i+n−1

(in decimal digits: m 4s followed by n 1s).

The numbers to select from are:

one number for each literal (X or ¬X):
if the literal belongs to the j-th variable and occurs
(exactly) in the k clauses i1, . . . , ik , its literal number is
10j−1 + 10i1+n−1 + · · ·+ 10ik+n−1.

for each clause, two padding numbers:
10i+n−1 and 2 · 10i+n−1 for all i ∈ {1, . . . ,m}.

This SubsetSum instance can be produced in polynomial time.
. . .

Packing Problems Conclusion

SubsetSum is NP-Complete (4)

Proof (continued).

Observations:

With these numbers, no carry occurs in any subset sum.
Hence, to match the target, all individual digits must match.

For i ∈ {1, . . . , n}, refer to the i-th digit
(from the right) as the i-th variable digit.

For i ∈ {1, . . . ,m}, refer to the (n + i)-th digit
(from the right) as the i-th clause digit.

Consider the i-th variable digit. Its target value is 1, and
only the two literal numbers for this variable contribute to it.

Hence, for each variable X , a solution must contain
either the literal number for X or for ¬X , but not for both.

. . .

Packing Problems Conclusion

SubsetSum is NP-Complete (5)

Proof (continued).

Call a selection of literal numbers that makes
the variable digits add up a candidate.

Associate each candidate with the truth assignment that
satisfies exactly the literals in the selected literal numbers.

This produces a 1:1 correspondence between candidates
and truth assignments.

We now show: a given candidate gives rise to a solution
iff it corresponds to a satisfying truth assignment.

This then shows that the SubsetSum instance is solvable
iff ϕ is satisfiable, completing the proof.

. . .

Packing Problems Conclusion

SubsetSum is NP-Complete (6)

Proof (continued).

Consider a candidate and its corresponding truth assignment.

Each chosen literal number contributes 1 to the clause digit
of each clause satisfied by this literal.

Satisfying assignments satisfy 1–3 literals in every clause.
By using one or both of the padding numbers for each clause
digit, all clause digits can be brought to their target value of 4,
solving the SubsetSum instance.

For unsatisfying assignments, there is at least one clause
with 0 satisfied literals. It is then not possible to extend the
candidate to a SubsetSum solution because the target value
of 4 cannot be reached for the corresponding clause digit.

Packing Problems Conclusion

Questions

Questions?

Packing Problems Conclusion

SubsetSum ≤p Partition

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Packing Problems Conclusion

Partition is NP-Complete (1)

Definition (Partition)

The problem Partition is defined as follows:

Given: numbers a1, . . . , ak ∈ N0

Question: Is there a subset J ⊆ {1, . . . , k}
with

∑
i∈J ai =

∑
i∈{1,...,k}\J ai?

Theorem

Partition is NP-complete.

Packing Problems Conclusion

Partition is NP-Complete (2)

Proof.

Partition ∈ NP: guess and check.

Partition is NP-hard: We show SubsetSum ≤p Partition.
We are given a SubsetSum instance with numbers a1, . . . , ak
and target size b. Let M :=

∑k
i=1 ai .

Construct the Partition instance a1, . . . , ak ,M + 1, 2b + 1
(can obviously be computed in polynomial time).

Observation: the sum of these numbers is
M + (M + 1) + (2b + 1) = 2M + 2b + 2
 A solution partitions the numbers into two subsets,

each with sum M + b + 1.
. . .

Packing Problems Conclusion

Partition is NP-Complete (2)

Proof.

Partition ∈ NP: guess and check.

Partition is NP-hard: We show SubsetSum ≤p Partition.
We are given a SubsetSum instance with numbers a1, . . . , ak
and target size b. Let M :=

∑k
i=1 ai .

Construct the Partition instance a1, . . . , ak ,M + 1, 2b + 1
(can obviously be computed in polynomial time).

Observation: the sum of these numbers is
M + (M + 1) + (2b + 1) = 2M + 2b + 2
 A solution partitions the numbers into two subsets,

each with sum M + b + 1.
. . .

Packing Problems Conclusion

Partition is NP-Complete (2)

Proof.

Partition ∈ NP: guess and check.

Partition is NP-hard: We show SubsetSum ≤p Partition.
We are given a SubsetSum instance with numbers a1, . . . , ak
and target size b. Let M :=

∑k
i=1 ai .

Construct the Partition instance a1, . . . , ak ,M + 1, 2b + 1
(can obviously be computed in polynomial time).

Observation: the sum of these numbers is
M + (M + 1) + (2b + 1) = 2M + 2b + 2
 A solution partitions the numbers into two subsets,

each with sum M + b + 1.
. . .

Packing Problems Conclusion

Partition is NP-Complete (2)

Proof.

Partition ∈ NP: guess and check.

Partition is NP-hard: We show SubsetSum ≤p Partition.
We are given a SubsetSum instance with numbers a1, . . . , ak
and target size b. Let M :=

∑k
i=1 ai .

Construct the Partition instance a1, . . . , ak ,M + 1, 2b + 1
(can obviously be computed in polynomial time).

Observation: the sum of these numbers is
M + (M + 1) + (2b + 1) = 2M + 2b + 2
 A solution partitions the numbers into two subsets,

each with sum M + b + 1.
. . .

Packing Problems Conclusion

Partition is NP-Complete (3)

Proof (continued).

Reduction property:
(⇒): construct Partition solution from SubsetSum solution

Let J ⊆ {1, . . . , k} be a SubsetSum solution,
i. e.

∑
i∈J ai = b.

Then J together with (the index of) M + 1
is a Partition solution, since∑

i∈J ai + (M + 1) = b + M + 1 = M + b + 1
(and thus the remaining numbers also add up to M + b + 1).

. . .

Packing Problems Conclusion

Partition is NP-Complete (3)

Proof (continued).

Reduction property:
(⇒): construct Partition solution from SubsetSum solution

Let J ⊆ {1, . . . , k} be a SubsetSum solution,
i. e.

∑
i∈J ai = b.

Then J together with (the index of) M + 1
is a Partition solution, since∑

i∈J ai + (M + 1) = b + M + 1 = M + b + 1
(and thus the remaining numbers also add up to M + b + 1).

. . .

Packing Problems Conclusion

Partition is NP-Complete (3)

Proof (continued).

Reduction property:
(⇒): construct Partition solution from SubsetSum solution

Let J ⊆ {1, . . . , k} be a SubsetSum solution,
i. e.

∑
i∈J ai = b.

Then J together with (the index of) M + 1
is a Partition solution, since∑

i∈J ai + (M + 1) = b + M + 1 = M + b + 1
(and thus the remaining numbers also add up to M + b + 1).

. . .

Packing Problems Conclusion

Partition is NP-Complete (4)

Proof (continued).

(⇐): construct SubsetSum solution from Partition solution

One of the two parts of the partition
contains the number M + 1.

Then the other numbers in this part sum to
(M + b + 1)− (M + 1) = b.

 These remaining numbers must have indices from {1, . . . , k},
since M + 1 is not one of them and 2b + 1 is too large.

 These numbers form a SubsetSum solution.

Packing Problems Conclusion

Partition is NP-Complete (4)

Proof (continued).

(⇐): construct SubsetSum solution from Partition solution

One of the two parts of the partition
contains the number M + 1.

Then the other numbers in this part sum to
(M + b + 1)− (M + 1) = b.

 These remaining numbers must have indices from {1, . . . , k},
since M + 1 is not one of them and 2b + 1 is too large.

 These numbers form a SubsetSum solution.

Packing Problems Conclusion

Partition is NP-Complete (4)

Proof (continued).

(⇐): construct SubsetSum solution from Partition solution

One of the two parts of the partition
contains the number M + 1.

Then the other numbers in this part sum to
(M + b + 1)− (M + 1) = b.

 These remaining numbers must have indices from {1, . . . , k},
since M + 1 is not one of them and 2b + 1 is too large.

 These numbers form a SubsetSum solution.

Packing Problems Conclusion

Partition is NP-Complete (4)

Proof (continued).

(⇐): construct SubsetSum solution from Partition solution

One of the two parts of the partition
contains the number M + 1.

Then the other numbers in this part sum to
(M + b + 1)− (M + 1) = b.

 These remaining numbers must have indices from {1, . . . , k},
since M + 1 is not one of them and 2b + 1 is too large.

 These numbers form a SubsetSum solution.

Packing Problems Conclusion

Partition is NP-Complete (4)

Proof (continued).

(⇐): construct SubsetSum solution from Partition solution

One of the two parts of the partition
contains the number M + 1.

Then the other numbers in this part sum to
(M + b + 1)− (M + 1) = b.

 These remaining numbers must have indices from {1, . . . , k},
since M + 1 is not one of them and 2b + 1 is too large.

 These numbers form a SubsetSum solution.

Packing Problems Conclusion

Questions

Questions?

Packing Problems Conclusion

Partition ≤p BinPacking

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Packing Problems Conclusion

BinPacking is NP-Complete (1)

Definition (BinPacking)

The problem BinPacking is defined as follows:

Given: bin size b ∈ N0, number of bins k ∈ N0,
objects a1, . . . , an ∈ N0

Question: Do the objects fit into the bins?
Formally: is there a mapping f : {1, . . . , n} → {1, . . . , k}
with

∑
i∈{1,...,n} with f (i)=j ai ≤ b for all 1 ≤ j ≤ k?

Theorem

BinPacking is NP-complete.

Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.

Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.

Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.

Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.

Packing Problems Conclusion

Questions

Questions?

Packing Problems Conclusion

Conclusion

Packing Problems Conclusion

. . . and Many More

Further examples of NP-complete problems:

3-Coloring: can the vertices of a graph be colored
with three colors in such a way that neighboring vertices
always have different colors?

MinesweeperConsistency: Is a given cell
in a given Minesweeper configuration safe?

GeneralizedFreeCell: Is a given generalized FreeCell
tableau (i. e., one with potentially more than 52 cards)
solvable?

. . . and many, many more

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Packing Problems Conclusion

Summary

In this chapter we showed NP-completeness
of three classical packing problems:

SubsetSum,
Partition, and
BinPacking

Packing Problems Conclusion

Test Your Intuition! – Results

1 Find a simple path from u ∈ V to v ∈ V with minimal length.

2 Find a simple path from u ∈ V to v ∈ V with maximal length.

3 Determine whether G is strongly connected.

4 Find a cycle.

5 Find a cycle that visits all nodes.

6 Find a cycle that visits a given node u.

7 Find a path that visits all nodes without repeating a node.

8 Find a path that uses all edges without repeating an edge.

Your ranking: 4 < 6 < 3 < 1 < 5 < 2 < 7 < 8

Packing Problems Conclusion

Test Your Intuition! – Results

1 Find a simple path from u ∈ V to v ∈ V with minimal length.
Avg. rank 3.89

2 Find a simple path from u ∈ V to v ∈ V with maximal length.
Avg. rank 4.89

3 Determine whether G is strongly connected. Avg. rank 3.72

4 Find a cycle. Avg. rank 2.61

5 Find a cycle that visits all nodes. Avg. rank 4.83

6 Find a cycle that visits a given node u. Avg. rank 3.50

7 Find a path that visits all nodes without repeating a node.
Avg. rank 5.94

8 Find a path that uses all edges without repeating an edge.
Avg. rank 6.61

Your ranking: 4 < 6 < 3 < 1 < 5 < 2 < 7 < 8

Packing Problems Conclusion

Test Your Intuition! – Results

1 Find a simple path from u ∈ V to v ∈ V with minimal length.
Avg. rank 3.89

2 Find a simple path from u ∈ V to v ∈ V with maximal length.
Avg. rank 4.89

3 Determine whether G is strongly connected. Avg. rank 3.72

4 Find a cycle. Avg. rank 2.61

5 Find a cycle that visits all nodes. Avg. rank 4.83

6 Find a cycle that visits a given node u. Avg. rank 3.50

7 Find a path that visits all nodes without repeating a node.
Avg. rank 5.94

8 Find a path that uses all edges without repeating an edge.
Avg. rank 6.61

Your ranking: 4 < 6 < 3 < 1 < 5 < 2 < 7 < 8

	Packing Problems
	

	Conclusion
	

