Theory of Computer Science
E5. Some NP-Complete Problems, Part II
Theory of Computer Science
May 13, 2019 - E5. Some NP-Complete Problems, Part II

E5.1 Packing Problems
Gabriele Röger
University of Basel
E5.2 Conclusion
May 13, 2019

Definition (SubsetSum)

The problem SubsetSum is defined as follows:
Given: numbers $a_{1}, \ldots, a_{k} \in \mathbb{N}_{0}$ and $b \in \mathbb{N}_{0}$
Question: Is there a subset $J \subseteq\{1, \ldots, k\}$ with $\sum_{i \in J} a_{i}=b$?

Theorem
SUBSETSUM is NP-complete.
E5. Some NP-Complete Problems, Part II
SUBSETSUM is NP-Complete (2)

Proof

SubsetSum \in NP: guess and check.
SubsetSum is NP-hard: We show 3 SAT \leq_{p} SUbSETSum.
Given a 3-CNF formula φ, we compute a SubsetSum instance that has a solution iff φ is satisfiable.
We can assume that all clauses have exactly three literals and that the literals in each clause are unique.

Let m be the number of clauses in φ, and let n be the number of variables.

Number the propositional variables in φ in any way, so that it is possible to refer to "the i-th variable".
SubsetSum is NP-Complete (2)

SubsetSum is NP-Complete (3)

Proof (continued).
The target number of the SubsetSum instance is $\sum_{i=1}^{n} 10^{i-1}+\sum_{i=1}^{m} 4 \cdot 10^{i+n-1}$
(in decimal digits: $m 4$ s followed by $n 1 \mathrm{~s}$).
The numbers to select from are:

- one number for each literal $(X$ or $\neg X)$: if the literal belongs to the j-th variable and occurs (exactly) in the k clauses i_{1}, \ldots, i_{k}, its literal number is $10^{j-1}+10^{i_{1}+n-1}+\cdots+10^{i_{k}+n-1}$.
- for each clause, two padding numbers: 10^{i+n-1} and $2 \cdot 10^{i+n-1}$ for all $i \in\{1, \ldots, m\}$.
This SubsetSum instance can be produced in polynomial time.

Proof (continued).

Observations:

- With these numbers, no carry occurs in any subset sum. Hence, to match the target, all individual digits must match.
- For $i \in\{1, \ldots, n\}$, refer to the i-th digit
(from the right) as the i-th variable digit.
- For $i \in\{1, \ldots, m\}$, refer to the $(n+i)$-th digit (from the right) as the i-th clause digit.
- Consider the i-th variable digit. Its target value is 1 , and only the two literal numbers for this variable contribute to it.
- Hence, for each variable X, a solution must contain either the literal number for X or for $\neg X$, but not for both.

Gabriele Röger (University of Basel) Theory of Computer Science

Proof (continued).

- Call a selection of literal numbers that makes the variable digits add up a candidate.
- Associate each candidate with the truth assignment that satisfies exactly the literals in the selected literal numbers.
- This produces a $1: 1$ correspondence between candidates and truth assignments.
- We now show: a given candidate gives rise to a solution iff it corresponds to a satisfying truth assignment.
- This then shows that the SubSETSum instance is solvable iff φ is satisfiable, completing the proof.
E5. Some NP-Complete Problems, Part II Packing Problems

Proof.

Partition \in NP: guess and check
Partition is NP-hard: We show SubsetSum \leq_{p} Partition. We are given a SubsetSum instance with numbers a_{1}, \ldots, a_{k} and target size b. Let $M:=\sum_{i=1}^{k} a_{i}$.
Construct the Partition instance $a_{1}, \ldots, a_{k}, M+1,2 b+1$ (can obviously be computed in polynomial time).
Observation: the sum of these numbers is
$M+(M+1)+(2 b+1)=2 M+2 b+2$
\rightsquigarrow A solution partitions the numbers into two subsets, each with sum $M+b+1$.

Partition is NP-Complete (3)

Proof (continued).

Reduction property:
(\Rightarrow) : construct Partition solution from SubsetSum solution

- Let $J \subseteq\{1, \ldots, k\}$ be a SubsetSum solution,
i.e. $\sum_{i \in J} a_{i}=b$.
- Then J together with (the index of) $M+1$
is a Partition solution, since
$\sum_{i \in J} a_{i}+(M+1)=b+M+1=M+b+1$
(and thus the remaining numbers also add up to $M+b+1$).

BinPacking is NP-Complete (2)

Proof.

BinPacking \in NP: guess and check.
BinPacking is NP-hard: We show Partition \leq_{p} BinPacking.
Given the Partition input $\left\langle a_{1}, \ldots, a_{k}\right\rangle$, we compute
$M:=\sum_{i=1}^{k} a_{i}$ and generate a BinPacking input
with objects of sizes a_{1}, \ldots, a_{k} and 2 bins of size $\left\lfloor\frac{M}{2}\right\rfloor$.
This can easily be computed in polynomial time,
and clearly a_{1}, \ldots, a_{k} can be partitioned into two groups of the same size iff this bin packing instance is solvable.

BinPacking is NP-Complete (1)

Definition (BinPacking)

The problem BinPacking is defined as follows:
Given: bin size $b \in \mathbb{N}_{0}$, number of bins $k \in \mathbb{N}_{0}$,
objects $a_{1}, \ldots, a_{n} \in \mathbb{N}_{0}$
Question: Do the objects fit into the bins?
Formally: is there a mapping $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, k\}$
with $\sum_{i \in\{1, \ldots, n\}}$ with $f(i)=j=b$ for all $1 \leq j \leq k$?
Theorem
BinPacking is NP-complete.

Further examples of NP-complete problems:

- 3-Coloring: can the vertices of a graph be colored with three colors in such a way that neighboring vertices always have different colors?
- MinesweeperConsistency: Is a given cell in a given Minesweeper configuration safe?
- GeneralizedFreeCell: Is a given generalized FreeCell

In this chapter we showed NP-completeness of three classical packing problems:

- SubsetSum,
- Partition, and
- BinPacking tableau (i. e., one with potentially more than 52 cards) solvable?
- ... and many, many more
https://en.wikipedia.org/wiki/List_of_NP-complete_problems

